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Introduction

There are few areas of pure mathematics which have profited more from
the influx of new ideas from other disciplines than the subject of this book.
The study of vector bundles over algebraic varieties has been stimulated
by successive waves of migrant concepts over the last few years, largely
coming from mathematical physics. It nevertheless also retains its roots
in old questions concerning subvarieties of projective space, and this is a
continuing source of challenging problems. The 1993 Durham Symposium
Vector Bundles in Algebraic Geometry, sponsored by the LMS and SERC,
had as its aim the goal of bringing together the leading researchers in the
field to explore further these interactions: to see how old problems would
yield to new techniques, and to present new opportunities for the already
highly developed subject of algebraic geometry.

The present book is not, however, simply the Proceedings of that Sym-
posium. Its purpose is certainly to reflect what was said and done there,
but we hope that it also presents to the mathematical world an overview
of the key areas of research mvolving vector bundles. Soie of the principal
speakers have been encouraged to expand their talks to give surveys of their
respective areas. The reader can thus find here not only reports of recent
progress, but also a perspective on where the new ideas have come from,
what they are doing at the moment, and what they might be capable of in
the future.

The incursions from mathematical physics and differential geometry have
taken several forms, and all are represented here. Probably the first one be-
gan twelve years ago with Donaldson’s proof of the theorem of Narasimhan
and Seshadri using gauge-theoretic methods and ideas from symplectic ge-
ometry. The legacy of that approach can be seen in the article of Bradlow,
Daskalopoulos, Garcia-Prada and Wentworth, where the concept of moment
map gives on the one hand a secure analytical foundation to the construc-
tion of moduli spaces of bundles with extra structure, and also its link with
the algebraic geometric viewpoint of Geometric Invariant Theory. One of
the remarkable features of the symposium was the way in which various
forms of ‘augmented structure’ were appearing spoutaneously in the content
of many talks, as a respouse to different types of problems. This particular
paper gives a statement of the state of the art in this general area. One of
these structures, arising in a purely algebro-geomietric setting, is what Le
Potler calls a ‘coherent system’. The discussion of these systems, including
some applications, forms part of his contribution to this book. In particular,
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he uses coherent systems together with the concept of determinant bundle
(which itself has already arisen in several contexts) to determine the Picard
groups of some moduli spaces.

The input of gauge theory into the subject is not confined to symplectic
geometry, and Donaldson’s polynomial invariants, yielding information on
the differentiable structure of algebraic surfaces, form an extremely active
area of research. It relies of course on the study of moduli spaces of stable
holomorphic bundles, but by embedding the subject in the more general one
of instantons on four-manifolds, it lends it an extra degree of flexibility. The
‘expected dimensions’ acquire a reality of interpretation which can be put
to use to prove very deep results. There are two contributions here in this
field. The first is by Donaldson himself on Floer homology and the second
by Tyurin on the impact of Donaldson polynomials in algebraic geometry.
Donaldson’s paper includes some concrete calculations for elliptic surfaces
and a preview of the ‘quantum cohomology’ of the moduli space of bundles
on a curve, surely a topic for rapid development in the next few years,
while Tyurin advances the ‘Jacobian’ of an algebraic surface (the Gieseker
closure of the component of the moduli space of bundles which contains the
cotangent bundle) as an essential tool for the study of surface geometry.
It is clear by now for various reasons that moduli spaces of vector bundles
have an exceedingly rich internal geometry which rivals the classical theory
of the Jacobian of a curve. Tyurin’s terminology is quite apposite. In a
similar vein, the paper of Balaji and Vishwanath discusses the analogues of
the Picard bundles over moduli spaces for curves.

In recent years a second influx of ideas from physics has come from confor-
mal field theory and in particular the challenge of understanding the Verlinde
formulae which describe the dimension of the space of sections of an ample
line bundle over the moduli space of bundles on a curve. There are many
aspects to this problem, and by now many proofs using different methods.
Here, we restrict ourselves to two discussions of the topic. In one, Ueno de-
scribes for algebraic geometers the construction of ‘conformal blocks’ from
the physicists’ description of conformal field theory. In the other contri-
bution, Szenes discusses the structure of the formulae themselves, and in
particular in the case of groups other than SL,;. The whole subject is very
broad, and a complete picture requires the establishment of rigorous links
between different languages. It happened that, in the course of the sympo-
sium, key results providing some of these were announced by Narasimhan,
Beauville and Laszlo but these will appear elsewhere.
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In any mathematical discipline, it is unwise to concentrate unduly on the
general at the expense of the particular. Algebraic geometry in particular is
a mature subject which is blessed with a wealth of beautiful examples, and
techniques which make even non-generic objects subject to close analysis.
Within the realm of holomorphic vector bundles, the Horrocks-Mumford
bundle is highly distinguished; the only known indecomposable rank 2 bundle
on P*, with 15,000 symmetries and closely related to modular surfaces, it
stands out like the icosahedron as an object of endless fascination. Hulek
gives here a survey of what is known about this bundle and its relationship
with other areas of mathematics since its discovery in 1972. A section of
the Horrocks-Mumford bundle gives an abelian surface in P* which is not
a complete intersection. This general problem in P* and P® is considered
by Decker and Popescu in their attack on the classification of codimenson
2 subvarieties. Although a subject of some considerable antiquity, there are
now new results emanating from computer algebra working on Beilinson’s
spectral sequence. The basic information about the moduli space of stable
bundles, its dimenson and smoothness, is given by the sheaf cohomology
groups H'(X,Ad(E)) for 0 < i < 2. A bundle for which the groups vanish
for all 7 is called ezceptional and is the subject of Drézet’s paper. Exceptional
bundles are building blocks for semi-stable sheaves on projective spaces,
and the author uses them to give information about the moduli spaces for
projective spaces of arbitrary dimension.

The Durham symposium was a successful forum for discussing all these
new approaches to the subject of vector bundles in algebraic geometry. We
hope that this book will make available to a wider mathematical public the
essential ideas in this rapidly developing area.
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On the Deformation Theory of Moduli Spaces
of Vector Bundles

V. Balaji and P.A. Vishwanath

§0 Introduction

This article is of the nature of a discussion of various results in the deforma-
tion theory of moduli spaces of vector bundles and the techniques involved in
their proofs. We have concentrated mostly on the conceptual points of proofs
and largely ignored all technical and computational details with needed ref-
erences to enable the interested reader to fill in the gaps.

The layout of the article is as follows: in section 1, we discuss results on
the deformations of the moduli spaces of rank 2 vector bundles. The topic of
section 2 concerns a study of intermediate Jacobians of these objects with a
view to getting Torelli type theorems for moduli spaces and finally, in section
3 we discuss the deformations of Picard bundle on the moduli space of vector
bundles.

§1 Deformations of the moduli space

Let C be a snmiooth projective curve of genus g > 3 defined over the complex
number field €. Let £ be a line bundle on C'. Let

Mf = MC(27 é)
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denote the moduli space of semi-stable vector bundles of rank 2 and deter-
minant isomorphic to £ on C. In this section we consider M, for £ = O¢ and
€ = Oc(zg), 2o € C. These we abbreviate by My and M; respectively. Both
My and M, are projective varieties which are unirational and normal of di-
mension 3g—3. Further, M, is a smooth variety. The theorem of Narasimhan
and Ramanan computes the cohomology of the tangent bundle of M;. More

precisely,

Theorem 1.1. (cf [NR])! If T, denotes the tangent bundle of M1, we have

39—3 ifi1=1
0 otherwise

ki (My, Tyg,) = dim H'(My, Tyy,) = {

Remark 1.2.

(a) Note that the group H°(My,Tay,), of infinitesimal automorphisms of
M, is trivial implies that the group of automorphisms, Aut(M;), of
M, is discrete. But as M; is known to be canonically polarised (i.e.
the canonical class is negatively ample), Aut(M,) is an algebraic group
and hence is finite.

(b) The number of moduli, 2! (M), Tr,), of My (cf. [KS]) is equal to the
number of moduli of C. This intuitively means that any small variation
of M is again a moduli space of vector bundles on a variation of C.

(c) Again, because the canonical class of M is negatively ample, Nakano’s
vanishing theorem (cf. [KS]) gives the vanishing of h*(M;,Ty,) for
i > 2. So it suffices, to prove the Theorem 1.1, to compute 2° and A®.

The proof of Theorem 1.1 uses correspondence techniques.? That is, let V
be the universal bundle on M; x . Let ad V denote the bundle of traceless
endomorphisms of V. Let p and g denote the projections from M; x C onto
M, and C respectively. We then have two Leray spectral sequences

Hz'+j(Ml x C,ad V) <= H‘(M1,ij-(ad V)

Hi(C, B q.(ad V))

10f course, the theorem is true more generally in all rank n and degree d such that
(n,d) =1 and curves of all genera ¢ > 1.

2We should add here that there is a different proof of Theorem 1.1, due to N.Hitchin,
available now (cf. [H)).
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On the one hand, deformation theory of stable bundles on a curve yields

' 0 ifi1#1

Rp.(ad V)= .

p(a ) {TM1 ifi=1.
When this is fed into the Leray spectral sequence arising from the projection
p, we get

HY(M;,Ty,) = H' (M, x C,ad V). (1.1)

On the other hand, if we could somehow study the deformation theory of the
family {Vz}sec (where Vi := Vs < (z}) of bundles on M) parametrised by
C, we could hope to connect H*(M, x C,ad V) with H*(C,T¢) and try to
compute h*(M1,Tay, ). This is provided by

Proposition 1.3. (cf. [NR], [S1]) Let ad,V := ad(V;), ¢ € C. Then we
have:
. ; 1 fi=1
(a) dim H*(M,,ad,V) —{ 0 ifi=0,2

(6) The Kodaira-Spencer map (ct. [KS], [NR]) for the family {V,}zec
pe :Tee — Hl(Ml,a,sz)

is an isomorphism for all z € X .

Proof of Theorem 1.1: Note that Proposition 1.3 has as a consequence:
0 ifi#1

I g V)~
Fq.(ad V) {Tc ifi=1.

This, together with the Leray spectral sequence arising from the projection
q, gives
HY(C,Te:) E H' (M, x C,ad V). (1.2)
Now put (1.1) and (1.2) together to complete the proof of Theorem 1.1.
The proof of Proposition 1.3 uses a construction which has come to be fa-
miliar as “Hecke Correspondence” (cf. [NR], [MS], [B]). Briefly, if P := P(V,),
it can be shown, using “elementary transformations” that P parametrises a

family {W,}icp of rank 2, trivial determinant semistable vector bundles on

(. Consider

E /N

M,
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where 1 is the canonical projection and ¢ is the characteristic map given by
the family {W;}iep. It is clear that ¢ is a Pl-bundle when restricted to the
open set, U, of stable bundles in M. We then have

(a) The codimension of P — ¢~!(U) in P is at least g — 1 where g is the

genus of the curve.

(b) Let Ty and T, denote the relative tangent sheaves of the maps ¢ and
¢ respectively. We have, on ¢~*(U), T, ~ T}.

These facts, together with the Leray spectral sequence and a repeated appli-
cation of Hartog type theorem for cohomology (see [S1] for details), give

H' (M,,ad, V)= H (Mo,0) 0<i<2

But M is known to be unirational and complete. This proves (a). For a
proof of (b) see [NR] or [S1].

Let N be the desingularisation of Mj constructed in [S2]. Let PV, denote
the category of parabolic semi-stable bundles (V, A), where V is of rank 4 and
det V ~ O, and A is a parabolic structure at the marked point zy € C with
small weights (a1, az). Then N parametrises isomorphism classes of vector
bundles in P, such that End V, the endomorphism algebra, is a specialisation
of the (2 x 2)-matrix algebra M.

Theorem 1.4. (cf. [BV1]) If Ty denotes the tangent bundle of N, we have

: 3g—3 ifi=1
(N, Ty) =
YN Iv) {0 ifi=0,2
Before proceeding with an idea of proof of Theorem 1.4, we collect some
facts about the variety N we need for the proof (cf. [BS], [BV1]).

(a) The variety N represents a natural moduli functor and hence there
exists a universal family of rank 4 bundles on C' x N.

(b) There also exists a family of quadratic forms {Q;};en on a fixed 3-
dimensional vector space parametrised by N. This stratifies N into
subvarieties {N;}2_, defined by

N;={t e N |rank@Q, < 3—i}.
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Thus N D N} D Ny O Nj. If we denote N — N3 by Z and N; — N,
by Y, then Y is a smooth divisor in Z with Z—Y ~ U (U is the open
set of stable bundles in M,). Further, Y is a P2 x PY~2 - bundle on
K — Ky, where K is the Kummer variety of dimg associated to the
Jacobian of C, Kj is its singular locus. The normal bundle, ny, of Y
in Z, is isomorphic to O(—1, —1) when restricted to the fibres of Y over
K — K.

(c¢) Finally, the codimension of Ny in N is 3.

We can now outline very briefly the key steps involved in proving Theorem
1.4.

Step 1. By a switching trick in the Hecke correspondence, we can compute
the dimension of H*(U,Ty). In fact

0 i=0,2

Step 2. By the use of a Hartog type argument, using part (c) above, we see
that it is enough to compute 2*(Z, Ty).

Step 3. Hi(Z,Tz) = Hi(U,TU) 1= 0,1,2.

Here we need the following cohomological result (cf. [G]).
lim H(Z,0z(nY) ® Tz) = H(U,Ty)
where Y C Z is the divisorand U = Z - Y.
Consider now the following exact sequence:
A0 — Oz((k—1)Y) — Oz(kY) — nt, — 0

for all £ > 0. Here ny is the normal bundle of Y in Z.

Using the explicit description of ny in (b) above, we prove that
H(Z,T;®nk)=0, i=0,1,2 ¥Yk>0.
Then, by step 3 and the long exact sequence of Ay, we get, for all k£ > 0
HY(Z,Tz ® O(kY)) ~ H'(Z,Tz @ O((k — 1)Y))

= H'(Z,Tz) ~ H(U,Ty).
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§2 Intermediate Jacobians, Torelli-type the-
orems

This section, as the title indicates, deals with Torelli type theorems for the
moduli spaces M := M) and N, the natural desingularisation of M. We
sometimes write M and N¢ to stress the dependence of these spaces on the
curve C.

The Weil-Griffiths intermediate Jacobian associated to the third coho-
mology group of a unirational variety V is an interesting invariant (cf. [Gr])
and is especially suited to study Torelli type theorems for the moduli spaces
of vector bundles. The key concept involved here is the so called ‘Weil map’.
We recall in brief the definition of the Weil map.

Let V be a smooth projective unirational variety and let T be a parameter
space which we assume to be a smooth projective variety. Let A be an
algebraic cycle on V' x T of codimension 2. Then we have its fundamental
class « € HYV x T,z). Assume H?(V,Z);or = 0. Then the (1,3)-Kunneth
component

a3 € HI(V, )® Ha(T,Z)

gives a homomorphism
a3 Hi(T, 1) — H3(V,2);

from which we get a map of real tori

Hy(T,R) H3(V,R)
b4 H(T,z) H¥V,2) (23)

The real vector spaces H3(V,R) and H,(T,R) are given complex structures
through the C-operator in Hodge theory. Now the fact that the form « is
of Hodge type (2,2), since it comes from an algebraic cycle, implies that ¢4

is actually a holomorphic map between the complex tori Alb(T) := %%,

the Albanese of T and J(V) := %;{‘—‘;%, the 2nd intermediate Jacobian of
V. This is termed the Weil map and we again denote the map by ¢4. One
of the very important properties of this map is its functorial behaviour with
respect to maps between parameter spaces (cf. [L]). We will have occasion
to return to this point later in section 3. To turn these compex tori into

Abelian varieties, let L be an ample line bundle on V and if w is the Kalher



BALAJI & VISHWANATH: Deformation theory 7

form on V associated with L, define a pairing
H3(V,c) x H3(V,€) — ¢

(o, 8) —»/V w3 AaAB  (n=dim.V).

It can be shown that this pairing satisfies Hodge-Riemann conditions turning
J2(V) into a polarised Abelian variety. Note that we have tacitly assumed
that all classes in H3(V,R) are primitive. This is true because of our assump-
tion that V is unirational. This assumnption is satisfied for the examples we
shall consider. We also let ¥y to denote the ample line bundle on J%(V)
defined by the above pairing and often refer to ¥y as the polarisation on
J3(V) induced from L.

In the context of the moduli spaces of vector bundles, if W is a universal
bundle on C x M, its second chern class c2(W) € H(C x M,Z) gives the
Weil map

dw : Al(C) — JAH(M).
We remark that the unirationality of M ensures that this map is independent
of the choice of the universal bundle on ' x M. Similar considerations apply
to the variety N: if E denotes the rank 4 bundle on C x N, we get the Weil

map

éE : Alb(C) — JE(N).
We then have

Theorem 2.1. (cf. [MN],[NR],(B]) The Weil maps

(a) dw : AIB(C) — J*(M) is an isomorphism of Abelian varieties .

(b) ¢g : AIB(C) — J*(N) is an isogeny of degree 29.

The proof of the theorem is rather technical and we concentrate only on
its consequences. One natural question in the context of the Torelli type the-
orem for moduli spaces is whether the polarisation on J2(M) (resp. J*(N))
induced from M (resp. N) is independent of the choice of an ample line
bundle on M (resp. N). Before we discuss this we make a definition.

Definition 2.2, Let A be an Abelian variety and L, and Ls be two line
bundles on A. We say that Ly is equivalent to L, (written Ly = Lg) if @
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power of Ly is algebraically equivalent to o power of Ly. Further, if A (resp.
A') is given the polarisation L (resp. L'), we soy that a map f: A — A’ of
Abelian varieties is polarisation preserving if f*L' = L on A.

In the case of M, since its anticanonical class is known to be ample, there
is a canonical choice of a polarisation on J2(M); namely, the one induced
from the dual of the canonical bundle. But, unfortunately, this fact is not
known for the variety N (Pi¢(N) ~ Z & Z). So, let Cp be a smooth curve
for which the Neron-Severi group of its Jacobian, N.S(J(Cy)), is isomorphic
to Z. It is well known that such curves exist. If W;(Cp) and ¥9(Ch) are
two polarisations on J2(N) induced from two ample line bundles on Ng,, we

have, from part (b) of Theorem 2.1,
\III(C()) = \112(00)

Now, if C' is any smooth curve and L; and Ls are ample line bundles on
N¢, connect (' to Cy in a holomorphic one parameter family {C,}. It can
then be shown, from the nature of construction of N, that L; and L, can be
spread out to the whole of the family. Then, ¢E¥4(C;) and ¢E¥,(C;) are
sections, over the family, of the local system formed from the cohomology
groups {H?(N¢,,2)}. And at curve Cy, some powers of these sections agree—
thereby implying that the same powers of ¢¥,(C) and ¢ ¥2(C) agree on
J?(N¢). That is, the equivalence class of the induced polarisation on J2(N)
is independent of the choice of an ample line bundle on N. In what follows
we always identify Alb(C') with the Jacobian, J(C'), of C' and give the natural
polarisation ©(C'), afforded by the “theta divisor”, on Alb(C). Note that the
above argument also proves that the map ¢g is polarisation preserving. A
similar statement holds for the map ¢w.

Once these preliminary details regarding polarisations are fixed, a Torelli
type theorem for the space N (along similar lines for the space M) can be
proved as follows: suppose that the moduli spaces N¢, and N¢, are isomor-
phic via an isomorphism f and let E; (resp. FEs) be the universal rank 4
bundle on C x N (resp. C x N3). If f is the induced isomorphism between
J?(Ny) and J%(N,), using the explicit nature of the isogenies ¢p,, one can
show the existence of a commutative diagram

J¥Ne,) L NG,
¢E1T T¢E2
AIB(Cy) = Alb(C,)
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where u is again an isomorphism. And because ¢g, and f are polarisation
preserving, it easily follows, from the commutativity of the diagram, that
u*0(C3) = ©(C1). But then, by the classical Torelli theorem, we find that
the curves C) and (', are isomorphic.

§3 Deformations of the Picard bundle

In this section we let M denote the moduli space of stable bundles on the
curve (' of rank 2 and determinant isomorphic to a fixed line bundle £ of
degree d. We consider only the case where d is a fixed odd integer greater
than 4g — 3. We also let W denote a universal family on M x C. Let p and
g stand for the canonical projections from M x C to M and C respectively.
Then the direct image sheaf if := p,.(W) is a locally free sheaf and is referred
to as a Picard bundle on M. Note that this depends on the choice of the
universal bundle on M x C. So we work with a fixed choice of a universal
famnily. This construction also comes with an obvious family of deformations
of the Picard bundle, {W(j)};es, parameterised by the Jacobian , J := J(C),
of C. Namely, for j € J(C), set

W(j) := pu(W x q"L;)

(here L; is the line bundle corresponding to jy € J. The main theorem of this

section 1s

Theorem 3.1. (cf. [BV2]) For a smooth curve C, without automorphisms,
of genus g, g > 2, we have

g ifi=1

(¢) dim H'(M,adW) = { 0 i 0.2

(b) The g-dimensional family {W(j)};es, defined above, is injective.

Remark 3.2. A detailed study of Picard bundles, P4, on J(%), the compo-
nent of Pic(C) parametrising degee d (d > 2¢ — 1) line bundles, has been
studied extensively. See [M], [K1], [K2] for questions regarding the topology,
deformations and cohomology of these objects.

Before proceeding with the idea of proof, we spend some time on the
results of Thaddeus (cf. [T]) which realises the projective bundle of the



10 BALAJI & VISHWANATH: Deformation theory

Picard bundle, P(W), as an end product of a series of blow-ups and blow-
downs starting with a projective space. More precisely, let P; (1 €Z;0 < i <
d—;l) denotes the moduli space of pairs (V, s); where V is a point in M and
s € P(H%(C,V)). The pair (V,s) is assumed to be stable with respect to a
weight a € {ma:c(O,% —i—1),4 —i}. These moduli spaces exist as smooth
projective varieties and carry universal families. We summarise the results
that we need in this work as follows.

(a) For i = 0, the space Py can be identified with the projective space
P(H°(Kc ® £)*); where K¢ is the canonical bundle of the curve C.
Also, the space P, can be obtained from Py by blowing up the space
P, along the curve C embedded in Py via the complete linear series
| K¢ ® €]. This blow up map we denote by ;.

(b) For i > 1, one can pass from F;_; to P; by a blow up and a blow down.
More precisely, we have a diagram

Here 9; (resp. ¢;) is a blow up of P;_; (resp. P;) with smooth centre
B; (resp. A;) with the same exceptional divisor E;. The centres of the
blow up, B; and A, admit explicit descriptions as projective bundles
over the i-th symmetric power, S'C, of C.

(c) Finally, the variety P := P, (i = 43%) can be identified with P(W).

In order to compute the numbers ~*(M,ad(W)); 0 < i < 2, we remark that
it suffices to compute h*(P,Tp); where Tp denotes the tangent bundle of P.
These two numbers can be easily related by an application of Theorem 1.1.
But, since the codimension of A4; in P;_; (resp. B; in F;) is at least five for
1 > 2, using a Hartog type argument it suffices to compute hi(152, Tg,). Now,
by an argument very similar in spirit to step 3 in the proof of Theorem 1.4,
we reduce to computing h*(P, — E»,Tp,)—which is equal to h*(Py,Tp,) as
the map 1, is an isomorphism outside of F5 and the codimension of B in
P, is large (cf. [T]). This number can in fact be computed for all values of i
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and we get 3
. 4g—3 ifi=1
(P, Tp) ~
¥(PuTe) {o ifi# 1

This completes the proof of (a).

To prove (b), it is enough to show that the codimension two cycles
{C2(W(j))}jes on M given by the 2nd Chern class of the family {W(j)};es
of deformations of the Picard bundle are all distinct in the Chow ring of the
moduli space M. Let W be the bundle on J x M defining the family {W(j)}.
Consider the Weil map

¢ = dyi7 ¢ Alb(J) — J*(M)

given by the codimension two algebraic cycle C3(W) on J x M.

On the other hand, the modified family {Co(W(j)) — C2(W(0))} (here 0
denotes the identity element of J) of cycles algebraically equivalent to zero
on M and parametrised by J, gives an Abel-Jacobi map (cf. [W], [Gr])

w:J — JHM).

Similarly the cycle A — {0} x J (here A is the diagonal cycle) on J x J
gives an Abel-Jacobi map w’' : J — Alb(J). It is easily seen that w’ is an
isomorphism. The functoriality of the Abel-Jacobi map gives o w’ = w (cf.
[L])-

A fundamental property of the map w, closely related to the functorial
property, is that it is holomorphic. So if two cycles are rationally equiv-
alent, they occur in a family of cycles parametrised by the projective line
P!. The holomorphicity of w implies that these two cycles have the same
image by w. So, to prove our claim, it is enough to show that the map w,
or, what is the same, ¢ is injective. For this we need to compute the (1,3)
Kunneth component of co(W) in H*(J x M,Z). One may argue, because of
the functorial nature of Chern classes, that it suffices to compute it on the
space J x P. Further, we may reduce to computing the (1,3) component
of co(Wh) in H*(J x P,,Z)—because the codimensions of centres of blow-up
are large enough to ensure this. Here Wj is the bundle on J x P, defined
by the requirement that if W) is the universal bundle on ¢ x P, and p and

3Note that for i = 1, this means that the space of first-order deformations of P
coincides with the space of embedded first-order deformations of C in Py modulo projective
transformations.
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q are the projections of ' x P; onto P, and C respectively, then
Wiliixp = po(W1 @ ¢ L)

(L; is the line bundle corresponding to the point j on J). Finally, one
can even reduce to making this computation on J x E;. Recall that E;
is the exceptional divisor in P;. But the universal family on C' x P; when
restricted to C x E; can be described explicitly (cf. [T]). Now one applies
the Grothendieck-Riemann-Roch theorem to write down cz(Wh|sxEg,) and
isolates the (1,3) component to show that it is an unimodular element (cf.
[BV2] for details).

Remark 3.3.

(a) Note that the proof of Theorem 3.1(b) also shows that the 2nd inter-
mediate Jacobian of pair spaces, J2(P;) are all isomorphic as polarised
abelian varieties to the Jacobian, J(C) of the curve C. This can be
proved analogous to the proof for N in section 2 once we note that
Pic(P,)) 2 1& 1. So Torelli-type theorem holds for these spaces too.
One may also recover Theorem 2.1(a) from the proof of Theorem 3.1.
Also, the proof of part (a) computes the number of moduli and the
group of infinitesimal automorphisms of the pair spaces P;. Note that
the number of moduli turns out to be 4g — 3. This suggests that the
moduli for P; should be the universal Picard variety of the curve C.

(b) The algebraic cycles Co(W(j)), j € J, are closely related to the twisted
Brill-Noether cycles W2°_Zg_3(j) defined on the moduli space M. In fact,
one may regard the isomorphism of J(C) with J?(M) as being given by
J = W34,_3(j), just as in the case of the Jacobian of a curve—where
the auto-duality is given by the translates of the theta divisor.
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Introduction

At the symposium in Durham, the proceedings of which are reflected in
this volume, there was a significant number of talks on what can generally
be called “augmented holomorphic bundles”. What we mean by this term
is a holomorphic object which consists of one or more holomorphic bundles
together with certain extra holomorphic data, typically in the form of pre-
scribed holomorphic sections. We were ourselves responsible for discussions
of so-called holomorphic pairs (i.e. a single bundle with one prescribed sec-
tion), holomorphic k-pairs (i.e. a single bundle with k prescribed sections),
and holomorphic triples (i.e. two bundles plus a holomorphic map between
them). There were also discussions of Higgs bundles (i.e. bundles together
with a section of a specific associated bundle), and of objects consisting of
a bundle plus a k-dimensional linear subspace of its space of holomorphic
sections (called “coherent systems” by Le Potier, and “Brill-Noether pairs”
by King and Newstead ).

While each variant has special features, there are important aspects com-
mon to all these types of augmented bundles. Perhaps the most significant
is the fact that all admit definitions of stability which extend the usual no-
tion of stability for a holomorphic bundle, and which allow the construction
of moduli spaces. Furthermore, except for the case of Higgs bundles, the
definitions each involve a real parameter. By varying the parameter, this
leads to a chain of birationally equivalent moduli spaces. An equally signif-
icant shared characteristic is a Hitchin-Kobayashi correspondence between
the definitions of stability and the conditions for existence of solutions to
certain coupled Hermitian-Einstein equations. This leads to descriptions of
the moduli spaces as Marsden-Weinstein reductions, and in particular gives
rise to Kahler structures.

It was immediately clear that it would be useful to collect together these
different examples in a single survey, and that the inter-relations between
them should be elucidated. In part, that is the purpose of this paper.
We have however gone somewhat beyond a review of previously published
work, and a number of the results we will describe are new, i.e. were not
known (or at least were not clear) at the time of the Durham symposium.
In particular, we will describe a set of equations which determine special

metrics for coherent systems, and discuss the associated Hitchin-Kobayashi
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correspondence. We will also describe the symplectic interpretation of these
equations and use this to show how the moduli spaces of stable coherent
systems relate to the moduli spaces of stable k-pairs.

We should point out that in the interests of brevity and clarity, any
proofs we give are somewhat sketchy - detailed proofs will, where necessary,
be given in a separate publication. We should also mention that our survey
is not exhaustive. We have concentrated mostly on the gauge theoretic,
or analytic, point of view, and furthermore have not covered all known
examples of augmented bundles.

Important examples not discussed include parabolic bundles, framed bun-
dles (or bundles with level structures), and the pairs of Huybrechts and
Lehn. Apart from the constraints of space and time, our main reason for
omitting these is that we have limited our attention to bundles over smooth
closed Riemann surfaces. The cases we have excluded involve base spaces
that are singular or non-compact or of dimension greater than one. We have
however included at the end (in Section 6) a few short comments on these
and other omitted examples.

In Section 1 we give the basic definitions and describe some relationships
between the various examples of augmented bundles. In Section 2 we review
their analytic descriptions, the equations for special metrics, and the asso-
ciated symplectic moment maps. We use this analytic machinery in Section
4, where the construction of moduli spaces is discussed. Before doing so,
however, some important features of the parameters involved in the defini-
tions of stability are described in Section 3. The results of Sections 3 and 4
are combined in Section 5, where we give a description of what we call the

“master space construction”.

Acknowledgements. The authors would like to thank the organizers of
the Durham symposium for the opportunity to participate in what was an
extremely interesting, informative and enjoyable occasion. They would also

like to thank Alastair King for many helpful conversations and ideas.
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1. Stability for Augmented Bundles

Let X be a closed Riemann surface of genus g. We will denote a complex
vector bundle over X by E. If E is given a holomorphic structure, we denote
both the holomorphic bundle and the associated coherent analytic sheaf by
E. If the degree and rank of £ are d and R respectively, then the slope of £
is given by u(€) = d/R. Similarly for any subbundle £ C £, we define the
slope by p(€') = deg(&')/rank(€").

In this section we give the definitions of stability for the augmented bun-
dles we will be considering in this paper. As will be seen, when the definition
involves a parameter, there is sometimes more than one way to formulate
the stability condition. The choices depend on exactly how one defines the
parameter, and for this there seem to be two main strategies. The first is
dictated by the correspondence between stability and equations (see Section
2), which suggests that the parameters in the definitions of stability should
correspond to the parameters in the equations. The parameters which we
have denoted by the letter 7 are all of this sort. This is not always the
most convenient strategy since in some cases it leads to stability conditions
that, at least superficially, bear no resemblance to the usual slope stability
condition for pure holomorphic bundles. For the purpose of comparison
with the ordinary Mumford-Takemoto stability, it is thus sometimes more
convenient to define the parameter in a different way. The various forms
of the definitions are of course equivalent. In Table 1 we have listed the
stability conditions in the form which is most convenient for comparison
with equations, but in the discussion below we have tried to give a more

comprehensive survey.

§1.1 k-Pairs
Perhaps the simplest augmentation one can add to a holomorphic bundle
£ is a single holomorphic section ¢ € £. We will reserve the term holomor-
phic pair for such a pair, which we will denote by (£, 4). As will be seen,
a single section can be considered as a special case of various more general
types of augmentation. One such generalization is from a single section to

more than one section. We begin with this type of augmented bundle, i.e.

Definition 1.1. A holomorphick-pair (£; ¢1, ¢2,. .., ¢x) consists of a holo-
morphic bundle, £ — X, together with k sections {¢1,¢2,...,¢%} in
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HYX,€).
Two k-pairs (€;¢1, 2, ..., ¢x) and (€'; 41, ¢4, . .., ¢} ) are isomorphic if
there is an isomorphism I : € — &' such that I(¢;) = ¢: for 1 < i < k.

Definition 1.2a. Given 7 € R, we say the k- pair (£;¢1,¢2,...,¢%) is
r-stable if the following two conditions apply to the subbundles of £:
(1) p(€') < 7 for all holomorphic subbundles €' C €, and
(2) u(€/€s) > T for any proper subbundle £y C € such that ¢; € £, for
all1<i<k.
If both strong inequalities are replaced by weak ones, then we say the k-pair

is T-semistable.
This can be reformulated as follows if we set o = 7 — p(€).

Definition 1.2b. We say the k-pair (£; ¢1,¢2,...,dk) is o-stable if
(1) p(€') < u(€) + o for all holomorphic subbundles £ C £, and
(2) p(€s) < w(&)— @—;,Ela for any proper subbundle €4 C € such that
pi € Ep foralll <i <k

In the special case when & = 1 and R = 2 this reduces to the stability

condition given in [T].

§1.2 Coherent Systems
If we view a section ¢ € H°(X, E) as determining a one dimensional
subspace, then the natural generalization of the holomorphic pair comes
from replacing the section by a k-dimensional linear subspace of H°(X, £).
Following Le Potier, we shall call these coherent systems, but the definition
of stability we give is due to [RV].

Definition 1.3. A dimension k coherent system (&, V') consists of a holo-
morphic bundle, £ — X, together with a k-dimensional linear subspace
V C HY(X,E).

Two coherent systems (£,V) and (£',V') are isomorphic if there is an
isomorphism I : € — €' such that I(V) = V"

We define the subobjects of (£,V') to be subbundles £' C € together with
subspaces V! CV N HY(X,E").
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For a given a € R, we define the a-degree of (£',V") to be
(1.1) deg, (€', V') = deg(€') + adim(V") .

The a-slope of (€', V') is then

dego (£, V")

(12) #alE3V') = — @

Definition 1.4. We say the coherent system (£,V) is a-stable if
pa(E,V') < pa(E,V)

for all subsystems (€', V"), though it is clearly enough to check this condition
on subsystems where V' = VNH®(X, £'). If the strong inequality is replaced

by a weak one, then we say the coherent system is a-semistable.

Remark. The definitions of a k-pair and a k-dimensional coherent system
are clearly closely related, in a way similar to that in which k-frames in C*
and k-planes in C"* are related. Indeed, given a k-pair (€;¢1,¢2,...,d%)
in which the sections are linearly independent in H%(X, ), we get a k-
dimensional coherent system with V = span{¢i,...,#x}, and conversely,
given a coherent system (£,V), we get a k-pair by taking a basis for V. A
natural question to ask is how the notions of stability compare for k-pairs

and coherent systems which are related in this way. One finds

Proposition 1.5. Let {¢1,...,¢x} be k linearly independent sections in
HY%(X,€), and let V = span{é1,...,¢x}. If(€,V) is an a- stable coherent
system, then (€;¢1,¢2,...,¢%) is a T-stable k- pair, where a and T are
related by

1.3 T=pa(E, V)= p(E) + _k_

(1.3) = kel V) = W(E) ara,nk(E)'

Proof. This can be shown directly from the definitions. It emerges much

more transparently, however, as an immediate consequence of Propositions
1.13 and 1.14 (in Section 1.5). 0O

The converse is not true, that is the r-stability of the k-pair does not
imply the a-stability of the coherent system. Counter-examples can be

constructed, for instance, as follows.
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Example 1.6. Let £ be a line bundle, and let £ be a semistable rank
(R — 1) bundle, such that 29 — 1 < deg(£) < p(&). Then both bundles
have vanishing first sheaf cohomology, and are generated by global sections.

Take any extension
0— & —E—L—0

and sections ¢1,da,...,dk—1, ¢k such that

(1) é1,¢2,...,Pk—1 generate &, and

(2) ¢« is not contained in H%(&,).
Notice that 0 C & C £ is the Harder-Narasimhan filtration for £, so that
p(€') £ p(&) for any subbundle &' C €. In addition, there are clearly
no proper subbundles which contain all k sections ¢1, ¢2,. .., ¢r. It follows
that for any 7 > p(&), the k-pair (€, ¢1,62,...,¢xr) is T-stable .

Now consider the coherent system with V = span{¢i,¢s,...,¢x}. If
we set Vo = span{¢1, ¢, ..., Pk—1}, then (&, Vs) is a proper subsystem of
(€,V). It is easily checked that po(&o, Vo) > pa(€, V) for any a > 0. Hence
for any a > 0, the coherent system (£,V) is NOT a-stable.

In section 4 we will examine how the moduli spaces of stable k-pairs and

coherent systems are related.

§1.8 Holomorphic Triples
Using the dimensional reduction description of holomorphic pairs given
in [GP], one arrives at a quite different generalization to those given by k-
pairs or coherent systems. The basic idea is that the data contained in the
pair (€, ) over X is equivalent to the data contained in certain holomorphic

extensions over X x P!. The extensions in question are of the form
0 —p't —F— q"0(2)—0,

where p, ¢ denote the projections from X x P! to X and P! respectively, and
O(2) is the degree 2 line bundle on P'. The point is that such extensions are
classified by H'(X x P!,p*€ ® ¢*O(—2)), which, by the Kunneth formula,
is isomorphic to H°(X, £). This construction can be generalized to include

extensions of the form

0—p&s —F—p'&e¢*0(2) —0,
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where £; and & are both bundles over X. Again by the Kiinneth formula,
such extensions are classified by H%(X,& ® £;). Such extensions thus
correspond to the triples (€1,&:,®) over X, where

Definition 1.7. A holomorphic triple (&;,&;,®) consists of two holo-
morphic bundles, £, — X, together with a holomorphic homomorphism
P 82 — 81 .

Two holomorphic triples (€1, &, ®) and (&}, £}, ®') are isomorphic if there
are isomorphisms I, : & — €] and I : & — &) such that ®' ol = I, 0P,
i.e. such that the following diagram commutes

I
& —— &

e

81 —-—)8{
1

We define the subobjects of (€1, &, ®) to be triples T' = (€1, &;,®') where
£1(€3) is a subbundle of £,(&;) and @' is the restriction of ® to ;.

Given T € R, we assign a real valued quantity to each subtriple by

R, (R, + R,)
- R, (Rll +R12)(iu’(81 6982)_7-) )

where Ry, Rz, R}, R}, are the ranks of &, &, £}, &, respectively, and p de-

(15)  6(T)=(w& ®E)—7)

notes the ordinary slope.
Definition 1.8a. We say T = (£1,&;,®) is T-stable if
6.(T"Y< 0
for all proper subtriples T' = (£],&;,9") of T. If the strong inequality is

replaced by a weak one, then we say the triple is T-semistable.
For comparison with the usual slope conditions, a more convenient refor-

mulation of this condition is as follows. Given a parameter «, we define the

a-degree and a-slope of a subtriple by

(1.6) deg, (£1,£3, ") = deg(€] ® &) +aR;
! ! !
(17) #Q(E{,gé,¢1)= dega( 19 27q>)

R+ R,
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Definition 1.8b. A triple T = (£,,£,,®) is said to be a-stable (resp.
semistable) if for all proper subtriples T' C T we have

pa(T") < pa(T) (resp. pa(T') < pa(T)) .

Lemma 1.9. (cf. [BGP])These two notions of stability for a triple are

equivalent when a and 7 are related by

_ _ R,
(1.8) T = po(T) = p(& & &) + B R2a .

§1.4 Higgs Bundles

The final type of augmented bundle which we will consider can be thought
of as a kind of holomorphic pair in which the notion of section has been gen-
eralized. In this generalization we allow the ¢ in (£, ¢) to be a holomorphic
section, not necessarily of £, but of an associated bundle or more generally
any bundle naturally related to €. If the associated bundle is End(€)®T*'y,
where T*'y is the holomorphic cotangent bundle of X, then the resulting
object is a called a Higgs bundle.

Definition 1.10. A Higgs Bundle (£, 0) consists of a holomorphic bun-
dle, £ — X, together with a Higgs field © € H%(X,End(£) ® K), where
K is the canonical bundle on X.

Two Higgs bundles (£,0) and (£',0') are isomorphic if there is an iso-
morphism I : £ — &' such that ©' oI = I 00, i.e. such that the following
diagram commutes

e L, ¢

o| ler

Definition 1.11. A Higgs Bundle (£, 0) is defined to be stable if

wE) < wE)
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for all ©-invariant subbundles, i.e. for all subbundles £ C £ such that
O(€&') C & ® K. If the strong inequality is replaced by a weak one, then we
say the Higgs bundles is semistable.

§1.5 Specialized triples

It is interesting to note that the augmented bundles discussed above can
all be realized as “specialized triples”. The specializations required to do
this are partly in the choice of the underlying bundles of the triple. This
is not however sufficient to yield the stability criteria we want as special
cases of the stability for triples. The further specialization that is required
can be understood either as a restriction on the notion of isomorphism, or
as a restriction on the complex gauge group (i.e. the group of complex

automorphisms) of the triple.

(a) k-Pairs. The k-pair (£;¢1,¢2,...,¢k) can be described as a triple by
using the fact that a section ¢ € H°(X, £) is equivalent to a map ¢ : O —
£, where O — X is the structure sheaf. Since we have k sections, we should
consider holomorphic triples in which the bundle &; is the trivial rank k
complex bundle with a fixed trivial holomorphic structure, i.e. E; = OF.
Since a map ® : O — £ is equivalent to a set of k sections {¢1,...,dx},

we get:

Proposition 1.12. There is a bijective correspondence between k-pairs of
the form (€; ¢1,d2,...,dx) and holomorphic triples of the form (£, 0%, @)

Notice that this bijection does not give a 1-1 correspondence between
the isomorphism classes of the k-pairs and the isomorphism classes of the
corresponding triples. The reason is that an automorphism of (£, 0%, ®) can
in general change the holomorphic structure (though not the isomorphism
class!) of both £ and OF, but it is only those which leave @* unchanged
that correspond to automorphisms of the k-pair. This restriction on the
allowed automorphisms leads to a restriction on the notion of stability for
the triples (£, O%, ®). It is stability in this restricted sense that corresponds
to the notion of stability for a k- pair. More precisely:

Proposition 1.13. Let (£,¢1,...,¢x) be a holomorphic k-pair, and let
(€, 0%, &) be the corresponding holomorphic triple. Then the following are
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equivalent:
(1) the k-pair (E, ¢1,...,¢x) is T- stable,
(2) the triple(€,0F, ®) is T-stable in the restricted sense that the stabil-
ity condition is satisfied, but only by subtriples of the form (€', ', ®)
where £' can be any subbundle of £, and @' is 0 or OF.

Proof. Under the correspondence between (&,#1,...,¢%) and the triple
(€,0%,®), subbundles £ C £ can be identified with subtriples of the form
(£',0,®). Furthermore, subbundles which contain all k sections can be iden-
tified precisely with the subtriples of the form (&', 0%, &). The result then
follows by checking that the condition 6,(£',0,®) < 0 is equivalent to the
condition p(€') < 7, and that the condition 8,(€', O%, @) < 0 is equivalent
to the condition p(€/€') > r. O

(b) Coherent Systems. By setting V = span{¢1,...,¢x}, we get a map
from the triples (£, OF, ®) to coherent systems. A subsystem (€', V') corre-
sponds to a subtriple (£',0', ®) where O' is a trivial subbundle of OF and
V' = ®(H%(X,0'")). By checking the stability condition on such subtriples,

we get an analog of Proposition 1.13 , namely

Proposition 1.14. Let (£,V) be a k-dimensional coherent system, and
let (€,0%,8) be a holomorphic triple such that V = &(H°(X,0%) =
span{¢i1,...,¢x}. Let 7 and a be such that

dim(V)
rank(E)

T=puE)+a

Then the following are equivalent:

(1) the coherent system (€,V) is a-stable,

(2) the triple (€,0%, ®) is T-stable in the restricted sense that the stabil-
ity condition is satisfied, but only by subtriples of the form (£',0', ®)
where &' can be any subbundle of £, and Q' is any trivial subbundle
of OF.

(c) Fixed &, triples. In both of the previous examples (i.e. k-pairs and
coherent systems), the associated triples (&1, &, ®) had the bundle &, fixed.
One can equally well consider specialized triples in which £ is fixed, and in
fact there is a duality between these and the fixed £; triples. With &; fixed,
one gets a special case of the objects studied by Huybrechts and Lehn. In
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[HL] they consider pairs (£, ®) consisting of a coherent sheaf over a smooth
projective variety plus a homomorphism ® : £ — &; to a fixed sheaf &
over the same variety. They give a definition of stability with respect to a
polynomial, 6. In the special case that the sheaves are holomorphic bundles
over a smooth curve, the polynomial has degree zero and the definition of

stability reduces to the conditions
(1) p(€") < p(€) — £6 for all subbundles in the kernel of & : £ — &,
(2) p(&") < &)+ RR—R}?IS for all proper subbundles,
where R (resp. R') is the rank of £ (resp. £').
The two cases in this definition correspond to subtriples (£},£',®) C
(&, &, ®) in which &) is respectively trivial or €. One thus finds that

Proposition 1.15. Let £ — X be a fixed bundle over a smooth algebraic
curve. Let £ — X be a bundle over X, and let (£,®) be a pair in the
sense of Huybrechts and Lehn, with & : £ — &. Let (&,€,®) be the
corresponding triple. Let T and § be real parameters such that

1
ra,nk(&))

7= (&) -

Then the following are equivalent:
(1) pair (€,®) is é-stable in the sense of [HL],
(2) the triple (€,&,®) is T-stable in the restricted sense that the sta-
bility condition for triples is satisfied, but only by subtriples of the
form (&}, €', ®) where £' can be any subbundle of €, but & is either

trivial or &.

(d) Higgs Bundles. To describe Higgs bundles as specialized triples, we
must consider triples (€,€2,®) in which the two bundles are related by
& =& ® K, where K is the canonical bundle of the Riemann Surface X.
It follows immediately that

Proposition 1.16. There is a bijective correspondence between Higgs bun-
dles (£,0) and holomorphic triples (€ ® K,£,0).

The correspondence between the stability criteria for Higgs bundles and
such triples has one unusual aspect, having to do with the role of parameters
in the definitions. Recall that the stability criterion for a triple involves
a parameter, 7, while that for a Higgs bundle does not. For the triple
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(E® K, E,0), T-stability is defined in terms of the quantity 6, evaluated on
subtriples. Notice however, that for subtriples of the form (€' ® K, &', 0),

we get

0,6 OK,E) = u((€ 9 K)DE) - w((E®K)DE)

with the cancellation of 7 being caused by the fact that the subbundles in
the subtriple have the same rank. Furthermore, subtriples of this kind are
precisely the ones which correspond to sub-Higgs bundles. We thus get

Proposition 1.17. Let (£,0) be a Higgs bundle, and let (£ ® K, £,0) be
the corresponding holomorphic triple. Then the following are equivalent:

(1) the Higgs bundle (£, ©) is stable,

(2) the triple (E® K, £, ©) is stable in the restricted sense that (for any
) the T-stability condition is satisfied only by subtriples of the form
(& ®K,&").

2. Analytic Aspects

By virtue of the correspondence between holomorphic structures and 8-
operators on a fixed smooth bundle E — X, the augmented bundles in
Section 1 can each be given an analytic description . Since X is a Riemann
surface, the set of holomorphic structures corresponds to the set of all such
O-operators. This set, which we denote by C, is an infinite dimensional
complex affine space, modelled on the space of (0,1)-forms with values in
E,ie. on Q¥(X,E). We will use the notation 9 for elements of C.

The sets of all holomorphic augmented bundles can likewise be given
descriptions as infinite dimensional complex spaces. In each case these are
subspaces of an ambient “configuration space”, with the subspaces cut out
by a holomorphicity condition. For example, the space of holomorphic pairs
on E is the subspace H C CxQ°(X, E) determined by the condition 9p(¢) =
0. The details for the other types of augmented bundle are collected together
in Table 2.

The complex gauge groups in Table 2 are, by definition, the groups of
complex bundle automorphisms covering the identity map on the base. No-
tice that in each case there is an action of the the complex gauge group

on the space of all holomorphic augmented bundles. Via this action, two
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augmented bundles are isomorphic if and only if they are represented by

points on the same complex gauge orbit.

§2.1 Equations for Special Metrics
On a complex vector bundle E — X with 8-operator Og, one can
define the Hermitian-Einstein equations. These equations relate g and a

hermitian metric H on E, and take the form
(2.1) V-1AF5, g =pl

Here F5, 4 € £22(End(E)) is the curvature of the unique connection deter-
mined by 8 and H, AF5, 4 € 2°(X,End(E)) is a contraction of F5_ 4
and the Kahler form w of the metric on X, y is a constant equal to the
slope u(E), and I is the identity section of End(E).

There are analogous equations for special metrics on each of the aug-
mented bundles discussed in Section 1. These now involve the extra holo-
morphic data as well as the g-operators. Table 1 contains a complete
listing. Except for the orthonormal T-vortex equations on coherent sys-
tems, these equations have all previously been studied (in the references
given in Table 1). The equations for coherent systems can be motivated by
moment map considerations, and we will say more about this in the next
section.

Notice that the Hermitian-Einstein equations can be defined on complex
bundles over Kahler manifolds of any dimension. Together with the integra-
bility condition (0g)? = 0, they give the absolute minima of the Yang-Mills
functional. The other equations in Table 1 can similarly be related to min-
imization criteria for gauge theoretic functionals. The functionals are now
of Yang-Mills-Higgs type, i.e. have terms depending on the extra data on
the bundle. On a given type of augmented bundle, the equations for the
minima of the functional can be identified with the appropriate equations
from Table 1 together with the integrability condition on 8, plus the holo-
morphicity condition on the data which defines the augmented bundle (cf.,
for example, [B], [GP]).

§2.2 Symplectic Structures and Moment Maps
If we fix a Hermitian metric on E — X, then the spaces Q79(X, E) and
QP9(X,End(E)) acquire fiber-wise, and hence L?, Hermitian inner prod-
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ucts. This gives rise to Kahler and hence symplectic structures on the con-
figuration spaces for the augmented bundles. This is immediate in the case
of k- pairs, Higgs bundles, and also triples (if metrics are fixed on both the
underlying smooth bundles in a triple). The case of coherent systems is
only slightly less direct, and will be explained below.

In each case, given the fixed metrics on the bundles, one can define a
reduction from the full complex gauge groups to the (real) unitary gauge
groups. We will denote these by ¢ and & respectively. The &¢- actions
on the configuration spaces restrict to give symplectic actions of the unitary
gauge groups on the underlying symplectic manifolds.

Table 3 lists the moment maps for these actions, where we have identi-
fied the Lie algebra of & and its dual via the Ad-invariant inner product.
Notice that in all cases the moment maps are essentially the left hand sides
of the equations for special metrics in Table 1. These equations involve a
Hermitian bundle metric and the holomorphic data which specify the aug-
mented bundle. When the holomorphic data is fixed, the equations are
interpreted as defining special metrics. Alternatively, they become moment
map conditions when the metric is fixed and the holomorphic data are the
arguments in the equation. Consider, for the sake of illustration, the case
of holomorphic pairs. This duality between the moment map condition and

the 7-vortex equation leads to

Proposition 2.1. Let ¥, : H -— g be the moment map given in Table
3, and let V, be the set of all (O, $) € H for which there exists a solution

(i.e. a metric) to the T-vortex equations. Then

(1) V, is the B¢-saturation of level set U;'(7), i.e. it is the union of
the ®¢ orbits through ;' (1), and

(2) there is a bijective correspondence

V, /8¢ « ¥(1)/8.

Similar correspondences apply for the other moment maps in Table 3.
These will be exploited in Section 4 to give complementary descriptions of
moduli spaces.

The symplectic structure and moment map for coherent systems arise as

follows. As indicated in Table 2, the configuration space for k-dimensional



30 BRADLOW et al: Stable augmented bundles

coherent systems on a given complex bundle E -— X is constructed by
considering holomorphic k-frames modulo the action of GL(k). The set of

all holomorphic k-frames is the subspace of H* given by
ST ={(0g; ¢1,02,...,¢1) € H | the sections are linearly independent}

The group GL(k) acts on the sections, and the configuration space for the
coherent systems is thus HCS = ST /GL(k).

If we fix a metric on the bundle, then C x (2°(X, E))*, and thus HF,
acquires a symplectic structure. We can also then define the unitary gauge
group for E, and restrict the above GL(k) action on H to an action of the
unitary group U(k). Furthermore, a calculation shows that:

Proposition 2.2. The U(k) action on H* is symplectic, and has a moment

map given by

(22) \PU(EEa¢1,¢2a--'a¢k):_i< ¢’i$¢’j >,
that is, Uy(Og, ¢1,92,...,9k) is the skew-Hermitian matrix whose (i,7)
entry is —i < ¢, ¢; >.

For any real & > 0 there is clearly a bijective correspondence between the
complex quotient STy /GL(k,C) and the symplectic quotient ¥ (—ial)/U(k).

This induces a symplectic structure on
(2.3) HOS = ST /GL(k,C) = ;' (—ial)/U(k) .

If we denote the corresponding symplectic form by wg, then it follows

from the symplectic quotient constructions that
(2.4) we = @w; .

We can now consider the action of the unitary gauge group & on the
symplectic manifold (HS,w,). From the above identification, this is the
same as considering the action on the quotient ¥;'(—ial)/U(k). It follows
that

Proposition 2.3. The moment map ¥¢cs : HCS — g* with respect to
the Kahler form w, is given by

(25) \I/CS(EEv V) = \I/k(gEv ¢’17“‘7¢’k) 3
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where {¢1,..., ¢} is any basis for V such that Uy (9g, ¢1,...,¢s) = —ial,
1.e. such that < ¢;,¢; >= al.

We can now see how the orthonormal 7-vortex equations arise. In order
to have the right relation between the moment map and the equations for
special metrics, we require that the equations characterize the G¢-saturation
of the level sets ¥5g(—i7I) € HCS. But the set VS = B¢ o U55(—irl)
consists of all coherent systems (€, V) for which the following condition is

satisfied:

Condition 2.4a. There is a basis {¢1,¢2,...,6x} for V and a complex
gauge transformation g € &¢ such that

Ui(g0(BE, b1, 92, .-, &) = —il,
where
Vy(BE, é1,...,¢k) = —ial .
By using g € &¢ to transform the metric K on E, we see that this is
equivalent to the condition that

Condition 2.4b. There is a basis {¢1,é2,...,¢x} for V and a metric H
on E such that

(2.6a) < ¢i,¢; >p=cal,
and
(2.6b) iANF5, g +Zh 10 @7 =71,

The parameters 7 and a in equations (2.6) are not independent. By
integrating the trace of the k-7-vortex equation, and using the Chern-Weil
formula for the degree of the bundle, one gets the third condition

(2.6¢) deg(E) + ka = rank(E)7
Equations (2.6) are the orthonormal T-vortex equations.

Remark. If we combine Proposition 2.2 with the calculation for the &-
action on H¥, we can obtain the moment map for the action of the product
& x U(k) on H*. The result is the map

U:HY — g* ®u(k)
given by
(2.7) U = (U, Py) .
We have the following equivalence.
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Proposition 2.5. Let ¢ : Uj'(—ial) — HCS denote the quotient (2.3).
Then

(2.8) g (U Gs(—itD)) = ¥ (—irl, —iad)

We will return to this in Section 4, where we will use it to relate the

moduli spaces of k-dimensional coherent systems and that of k-pairs.

§2.8 Hitchin-Kobayashi Correspondences
The relation between the Hermitian-Einstein equation and ordinary slope
stability of a holomorphic bundle is given by the following result, known as

the Hitchin- Kobayashi correspondence.

Theorem 2.6 [UY,D2,NS,Ko,L]. An irreducible holomorphic bundle
admits a Hermitian-Einstein metric if and only if the bundle is stable.

For all of our examples of augmented bundles we have both stability
criteria and special equations, with obvious formal similarities to the case
of plain bundles. We can thus expect correspondences similar to the one
above for each of the augmented bundle types in Table 1. Indeed, in all
cases except for that of coherent systems, precise statements and proofs of
such Hitchin-Kobayashi type correspondences can be found in the references

listed in Table 1. One has, for example, the result that:

Theorem 2.7 [B]. For a generic permitted value of r, the following are
equivalent
(A) the holomorphic pair (8, ¢) admits a Hermitian metric satisfying
the 7-Vortex -equation,
(B) the holomorphic pair (Og, ¢) is T-stable.
The implication (B)=> (A) holds for all .
The non-generic values of 7 are those for which there can be “reducible

or split” solutions to the 7-Vortex equation. This will be explained further

in Section 3. Notice that an immediate corollary of this theorem is

Corollary 2.8. For generic 7, one can identify V, = H3, where H3 denotes
the set of T-stable holomorphic pairs in H.

In the case of coherent systems, one direction in the equivalence is readily

established, namely:
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Proposition 2.9. Let (€,V) be a k-dimensional coherent system, and let T
be generic (in the sense described in section 3). Suppose that (£,V) admits
a solution to the orthonormal T-vortex equations. Then (€,V') is a-stable
in the sense of Definition 1.4, with a and T related by (2.6¢).

Sketch of Proof. Let {¢1,62,...,9x} and H be the basis for V and the
metric on E giving the solution to equations (2.6). Consider a subsystem
(&',V') with V! = VN H%(X,£") and dim(V') = k¥'. By making a unitary
change of basis if necessary, we can assume that {¢1,..., ¢x} is a basis for
V'. Using the C* splitting £ = &' @ £/£', we can extract from equation
(2.6b) its projection onto Hom(€’,£"). This gives the equation

(29) iAFTIaE,H +B+3E 4041+ =11,

where the termn B comes from the second fundamental form for the inclusion
&' — £, and @' denotes the projection of Ef=k'+1¢i ® ¢; onto Hom(E&', E").
Taking [, Tr of this equation, and using the positivity of the terms B and
&', yields the condition

(2.10) deg(€") + BE ||¢:]l? < rrank(€')

with equality only in the case of a decomposable coherent system. Now by
equations (2.6a) and (2.6¢) we see that 2K Nl = ak', and 1 = po(E, V).
Equation (2.10) thus implies that the subsystem (£',V') satisfies the a-
stability condition. O

Suppose conversely that we are given an a-stable k- dimensional coher-
ent system (€,V). To prove the converse to Proposition 2.9, we need to
show that we can choose a basis {¢1, ¢2,...,¢x} of V and a metric H on E
such that the orthonormal 7-vortex equations are satisfied. One strategy for
doing this is to convert the problem into one about metrics on a holomor-
phic triple. As discussed in Section 1.5, we can do this by viewing a basis
{¢1,...,¢1} as the image of a map & : OF — £. The triples associated to
(€,V) are thus of the form (£, OF, &), with (O*) = V. We then use

Proposition 2.10. Let (£,V') be a k-dimensional coherent system, and let
(€, 0%,®) be a corresponding triple with ®(O*) = V. Then the following
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are equivalent:

(1) One can choose a basis {¢1,¢2,...,¢r} of V and a metric H on E
such that the orthonormal T-vortex equations are satisfied,

(2) One can find metrics H and h on E and X x C* respectively such
that the fiber metric h is independent of the fiber, and the following

two equations are satisfied
(2.11a) iNFj, 4+ 22" =11

(2.11b) /X (iAFj, , — 8*®) = alj,

Here O (resp.0y) is the 8-operator giving the holomorphic structure
on £(resp. O%). Also, in (2.11b) we have identified Q°(X, End(O*)) ~
C>=(X,GL(k)) and I is the identity element in GL(k).

Equations (2.11) are clearly related to the coupled vortex equations for
triples of the form (8,0",‘11)), and these latter equations can in turn be
related by dimensional reduction to the Hermitian-Einstein equations on
a holomorphic extension over X x P!. The basic idea is then to adapt
the proof of Theorem (2.6), specifically the methods of Simpson in [Sil],
so that it applies not to the full Hermitian-Einstein equations, but to the
modified version which correspondsto equations (2.11). We leave a complete

treatment of this result to a future publication.

Appendiz: Relation to Specialized Triples
It is interesting to observe that the moment maps for k-pairs, coherent
systems and Higgs bundles can each be related to the moment map for

triples. For example:

k-Pairs.

Let HT(E,C*) be the space of triples (&1, s, ®) in which the underlying
smooth bundles of £ and £; are E and the trivial rank k bundle respectively.
This has a subspace HZ (E, C¥) consisting of triples of the form (£, 0%, &),
i.e. in which & = O%. Recall from Section 1.5 that this subspace consists
of the triples which correspond to k-pairs on E. Now fix a metric ky on the
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trivial rank k bundle such that the standard frame is an orthonormal frame,
and also fix a background metric K on E. Use these metrics to induce the
symplectic structure on HT(E, C*), and to define the unitary gauge groups
& for E and B9 = C*(X,U(k)) for the trivial bundle. The moment map
for the action of & x 8y on HT(E, Ck) is asin Table 3, i.e. is ¥ = (¥, ¥;)
with ¥, (€, 0%, @) = AF5, j —i2®" and ¥,(¢, OF, 3) = AF5 4, +192"®.
Now consider the subgroup of & x &; given by &; = & x I, where I is
the identity element in &o. The subspace H3 (E,C*) is a B-invariant set.
Furthermore the moment map for the action of this subgroup is obtained
from W7 by projecting onto the Lie subalgebra of &*, and this projection is
simply projection of (¥1, ¥;) onto its first factor. We can restrict this map
to the subspace HI'(E, C*) and thus show

Proposition 2.11. Let \II(T’.C) denote the moment map for 8 on HT (E, C*),
and let Uy be the moment map for & on H*. Let (£,0%,®) € HI(E,CF)
be the triple corresponding to the k-pair (€, ¢1,...,¢%) € HX. Then

UP(E, 0%, 8) = Uh(E, 1, ., 1) -

Proof. Since the standard frame for B, = X X C* is orthonormal with
respect to the metric kg, we compute that ®®* = X, ¢, ® ¢7.

Coherent Systems.

For the case of coherent systems, we need to consider the action of the
subgroup &¢cs = & x U(k) on the same space as for k-pairs, i.e. on
HT(E,CF). Here U(k) C &, is the subgroup of globally constant gauge
transformations. The projection from g@® go onto the Lie subalgebra of &¢g
is given by (u,v) — (u, fx v), so the moment map for B¢g has fX(\I/2) as
its second component. When evaluated on a triple of the form (&, 0%, ®)

we get
(213)  UFE 0N @) = (AF;, , —iSh 4:@¢], i< 65,8, > ),

and hence

Proposition 2.12. Let \II(TCS) denote the moment map for &¢s on HT (E, CF),
and let ¥ be the moment map in equation (2.7) for the & x U(k)-action on
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HE. Let (€,0%,&) € HT(E,CF) be the triple corresponding to the k-Pair
(E,61,...,6k) € HF. Then

VEI(E O, @) = UE 61, 94) -

Suppose further that HC? is given the symplectic structure coming from
;' (—ial)/U(k), and that ¥cg and q are as in Propositions 2.3 and 2.5.
Let (£,V) be a coherent system in HC3, and let (€, (’)k,<I>) be the triple
corresponding to a k-pair in ¢~'(€,V). Then

Uos(E,V) = 89 €, 0% 9).

Higgs Bundles.

To understand Higgs bundles from this point of view, we must consider
the space of triples in which & = £ ® K and & = €. Fix a metric on
the underlying smooth bundle E, and let k¥ be the metric on K such that
AF; = constant. Let &, and & be the unitary gauge groupsof EQK and E
respectively. The relevant subgroup of ; x & is the copy of & “diagonally”
embedded by g — (¢ ®I,g). At the Lie algebra level, the projection map
will take (u,v) to E{—”, and it can be shown that the moment map for this
subgroup, evaluated on a triple (£ ® K, £, ©), corresponds to the moment
map for &, evaluated on the Higgs bundle (£, 0).
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3. The Stability Parameters

The parameter involved in the definition of stability for augmented bun-
dles can be interpreted in several ways. These different interpretations lead,
as we shall see in Section 4, to different constructions of the correspond-
ing moduli spaces. On the one hand the parameter appears naturally in
the equations corresponding to the various augmented bundles. In contrast
with the parameter appearing in the Hermitian-Einstein equation or Hitchin
self-duality equations (see Section 2.1), this parameter is not fixed by the
topology, and one can actually solve the equations for different values of the
parameter. The parameter can also be interpreted from the point of view
of Geometric Invariant Theory: When trying to construct an algebraic mod-
uli space parametrizing equivalence classes of augmented bundles, due to the
additional structure, one has some freedom in the choice of a linearization
necessary to perform the GIT quotient. This freedomn —which does not exist
in the case of the moduli space of semistable bundles—is precisely the choice
of a one-parameter family of linearizations. A third interpretation, at least
for pairs and triples, is related to the correspondence between these objects
and certain SU(2)-equivariant vector bundles on X x P! (see Sections 1.3
and 4.3). The parameter can be encoded in the choice of a Kahler metric
on X X P!, in such a way that the 7-stability of the augmented bundle is
equivalent to the slope stability of the equivariant bundle with respect to the
corresponding Kahler polarization.

§3.1 Upper and Lower Bounds

Although the parameter that appears in the definition of stability for the
augmented bundles can be in principle any real number, it turns out that the
stability condition forces it to be bounded from below and in most cases also
bounded from above. In other words, in most cases no stable objects exist
for values of the parameter outside of a certain interval. In this section we
show how to obtain these bounds. They are always expressible in terms of
the numerical invariants of the augmented bundle (ranks, degrees, etc.).

Proposition 3.1 Let (€;¢1,...,¢x) be a T-semistable k-pair of rank R and
degree d, then

(1) 7 2 u(E) = 4.

(2) If k < R, then T < ££.

(3) If k > R, then in general T is unbounded from above. Moreover, if
T > d, then all T-semistable k-pairs are T-stable, and a k-pair is T-stable if
and only if the sections generically generate the fiber of £.

If (€ ¢1, ..., ¢1) is in fact T-stable, then the inequalities in (1) and (2) are
strict.

Proof. The lower bound follows from applying (1) in Definition 1.2a to the
subobject (£,0). If k < R, the subsheaf £ generated by the sections has of
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course rank less than or equal to k and if k¥ < R, then £ is a proper subsheaf
of £ and we can apply condition (2) in Definition 1.2a to (£, ¢, ..., ¢z) to
obtain the upper bound for 7. For the proof of (4) we refer to [BeDW]. O

Corollary 3.2 For k < R, if (€;¢1,...,¢k) is T-semistable (T-stable) for
some value of T, then d >0 (d > 0).

Similarly one can prove

Proposition 3.3 Let (€,V) be an a-semistable coherent system of rank R,
degree d and dimension k, then

() a>0.

(2) If k< R, thenaﬁﬁ .

If (E,V) is in fact a-stable, then the above inequalities are strict.

Corollary 3.4 For k < R, if (£,V) is a-semistable (a-stable) for some value
of a, then d >0 (d >0).

Proposition 3.5 Let (&, &, ®) be a T-semistable triple, then
(1) T 2 }t(gl) . R
(2) If Ry # Ry, then 7 < (&) + |R_1_%2L(#(51) - 1(&)) -

Equivalently, if the triple is a-semistable, then
(IYa>0.
(2)) If Ry # Ry, then a < (14 pB)(u(&1) - w(&)) -

Proof. (1) follows from applying the stability condition to the subtriple T =
(&1,0,0), and (2) from applying it to the subtriples

T] = (0, Ker<I>,<I>) and T2 = (Im<I>, 82, @)

(See [BGP] for details). O
Combining the lower and upper bounds on 7 (or @) we can deduce the
following.

Corollary 3.6 Ifrank(£;) and rank(€;) are unequal, then a triple (&, &;,®)
cannot be stable unless p(E;) < p(&).

Furthermore,

Proposition 3.7 Let (£,,&,,®) be T-stable and suppose that Ry = Ry. If
® is not an isomorphism, then dy > dy. In particular, in any T-stable triple
(&1,&2,®), the bundle map ® is an isomorphism if and only if Ry = Ry and
dy = ds.
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Proof. The fact that d; > d, follows from the inequality
(R] - Rz)T < d] - d2 s

which applies if ® is not an isomorphism (cf. [BGP]). In particular, if ® is
not an isomorphism then d; # d;. Conversely, if & is an isomorphism, then
clearly Ry, = R2 and dl = d2. (]

When @ is an isomorphism the range for 7 can fail to be bounded. One
has for example the following result (cf. [BGP]).

Proposition 3.8 Suppose & = &. Then for any T > p(€), the triple
(E1,&2,®) is T-stable if and only if @ is an isomorphism and & is stable.

§3.2 Critical values

In principle the parameter involved in the definition of stability is a con-
tinuously varying parameter. However, the stability properties of a given
augmented bundle do not likewise vary continuously, but can change only
at certain rational values of the parameter, that we shall call critical values.
This is due to the fact that, except for the parameter itself, all numerical
quantities in the definition of stability are rational numbers with bounded
denominators. In the case of k-pairs this has the additional consequence that
for a generic (i.e. non-critical) value of the parameter there is no distinction
between stability and semistability. This is in contrast to the case of pure
bundles, where the notions of stability and semistability coincide only when
the rank and degree of the bundle are coprime. We shall show in the next
propositions that for k-coherent systems with k& > 1 as well as for triples both
the value of the parameter and the greatest common divisor of the rank and
degree are relevant.

Proposition 3.9 The critical values of T for k-pairs of rank R and degree
d are the rational numbers whose denominator is less than or equal to R.
Moreover if T is not a critical value then all T-semistable k-pairs are T-stable.

Proof. It is clear that only for critical values of 7 can we have a subbundle
& C € satisfying p(€') = T or p(E/E) =T. o

Proposition 3.10 Let (£,V) be a k-coherent system of rank R and degree d,
and let (€',V") be a subsystem such that po (€', V") = po(E,V). Then either

RK = Rk and p(€) = p(€),
or
_ Rd—Rd
"~ RK — Rk
In particular, if R and d are coprime, or R and k are coprime, and o is not

a rational number with denominator of magnitude less than or equal to Rk,
then all a-semistable coherent systems are a-stable.
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Proposition 3.11 Let T = (&1,&;,®) be a T-semistable triple, and let T' =
(&1, &5, ®") be a subtriple such that 6,(T") = 0. Then either

RiRy = Ry and p(€] ® &) = p(& 8 &),
or
Rul By + RME ® ) — RyFa + Ru(106) _
RaRy — iRy
In particular, if R; + Ry and dy +do are coprime, and 7 is not a rational

number with denominator of magnitude less than Ry Ry, then all T-semistable
triples are T-stable.

The number of critical values inside the range is clearly finite if this is
bounded above. Although for k-pairs and k-coherent systems, in the case
where k > R, and for triples when R; = Ry, there is no upper bound for the
parameter, the following Propositions show that the number of critical values
is finite also in this case.

Proposition 3.12 Suppose that k > R. Then there are no critical values for
the T-stability of a k-Pair for 7 in the range (d, 00).

Proof. This follows from (3) of Proposition 3.1, which shows that 7-stability
and 7-semistability coincide for T in the range (d, o). a

Proposition 3.13 Suppose that k > R. Then there is some finite oy such
that a-semistability and a-stability coincide for a coherent system (&,V)
whenever a > ag (and (R,d) =1 or (R, k) = 1). In particular, when k > R
there are no critical values for a in the range (ag, 00).

Proof. Suppose that (£,V) is a-semistable and that a > ﬂ?l (With r =
pe(E, V) this corresponds to 7 > d). If (£,V) is not stable then there is a
subsystem (&', V') with p.(&, V") = pa(E,V). It follows that either Rd’ —
R'd=0and RK' — R’k =0, or that we must have

. Ri— R
~RF-RE’

However, by considering any k-pair obtained from (€, V), we can conclude
(from the 7-stability of the k-pair) that £ must be generically generated by
global sections in V. In particular, V' cannot lie completely in H°(X, £’) and
the quotient £/€’ must be generically generated by the projections of sections
in V. Thus (as in the previous Proposition), &’ < d. It follows that

R+ R

<d—
o < R =R

<2Rd.

Thus the result applies for any ay > 2Rd. m]



BRADLOW et al: Stable augmented bundles 41

Remark. In fact, since coherent systems arise as U(k)-symplectic reduction

of k-pairs, we expect that there should be no further critical points after
o= ngk—l) ‘

Similarly, for triples (&, &, ®) in which R; = R, and d; = ds, the range
for 7 is a semi-infinite interval, but, at least when the rank and degree are
coprime, we have

Proposition 3.14 Let (&, &2, ) be a triple with By = Ry =R, d; = d, = d,
and (R,d)=1. If 7 > %, then T-stability is equivalent to T-semistability. In
particular, there are no critical values of T in the range (d/ R, o0).

Proof. Suppose that 7 > d/ R. We first show that if ® is not an isomorphism,
then (&, &, ®) cannot be T-semistable. Indeed if ® is not an isomorphism,
then the kernel of ®, K, is a non-trivial subbundle of £, and the image I has
rank strictly less than R. By applying the 7-semistability condition to the
proper subtriples (0, K, ®) and (I, &, ®), and using the fact that

WK) 2 B = e,

we thus get

L= E)STSpE/D SHE) ST S pE) = 5,
where here 7’ is related to 7 by R(7 + ') = 2d. Suppose then that (&, &, @)
is T-semistable with Ry = R; = R and ® an isomorphism. Since @ is an
isomorphism, we can find subtriples (&7, &;, ®) with £ ~ £ ~ £ for any
subbundle £ C €. For these we get 0.(&],&;,®) = (u(€') — w(€)). The 7-
semistability of the triple thus implies the semistability (and hence stability)
of £. The proposition now follows from Proposition 3.8. o

Summarising, we see that the set of critical values divides the range for
the parameter into a finite number of subintervals, such that for values of the
parameter in the interior of any of these subintervals stability and semista-
bility coincide—provided that some extra coprimality condition is satisfied in
the case of coherent systems and triples. We have then a finite number of
essentially different stability conditions, and hence a finite number of moduli
spaces.

§3.3 Extremal Values
One of the main questions at this point is what is the relation between
the stability of the augmented bundle and the stability of the bundle itself
(or bundles). It turns out that they are closely related precisely when the
parameter is “small”, that is when it lies in the interval between the lower
bound and the next critical value. This fact will allow us, when studying
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in Section 4 the moduli spaces of augmented bundles for different values of
the parameter, to define a map from the moduli space of augmented bundles
for small value of the parameter to the moduli space of semistable bundles.
These maps are the higher rank generalizations of the classical Abel-Jacobi
map from the space of effective divisors—the moduli space of pairs when £
is a line bundle—to the Jacobian of the Riemann surface.

First we consider the case in which the parameter is equal to the lower
bound. It follows immediately from the definition of 7-semistability that

Proposition 3.15 Let (€; ¢y, ..., ¢x) be @ k-pair of rank R and degree d, and
let 7 =d/R. Then (&;¢1,...,¢x) is T-semistable if and only if € is semistable.
Moreover, for such a value of T there are no T-stablek-pairs.

One has similar results for coherent systems and triples. For the “small”
range of the parameter one has the following.

Proposition 3.16 [BD1],[BDW] Let (£;¢1,..., ) be a non-degenerate k-
pair. Let 7y be the first critical value after p(€). Then for p(€) <7< n

(1) If (&; é1, ..., k) is a T-stable k-pair, then € is a semistable bundle.
(2) Conversely, if € is stable, then (£; ¢, ..., &) will be a T-stable
k-pair for any choice of ¢; € HY(E).

Proposition 3.17 [KN,RV] Let (£,V) be a non-degenerate k-coherent sys-
tem. Let a; be the first critical value after p(€). Then for0 < a < oy

(1) If (€,V) is a a-stable k-coherent system, then € is a semistable bundle.
(2) Conversely, if € is stable, then (€,V) will be a a-stable
k-coherent system for any choice of k-linear subspace V. C HY(E).

Proposition 3.18 [BGP] Let (&,£2,®) be a non-degenerate holomorphic
triple. Let 1y be the first crititical value after p(&1). Then for (&) <7< n

(1) If (&1, &2, ®) is a T-stable triple, then both £ and & are semistable bundles.
(2) Conversely, if £ and &, are stable bundles, then (£,,&,®) will be a T-stable
triple for any choice of ® € H(Hom(&;, £)).

The analysis of the situation when the parameter is equal to the upper
bound—when this exists—or lies in the “large” range (the open interval be-
tween the upper bound and the immediate smaller critical value) is a little
bit more involved. We consider here only the case of pairs (cf. [BDW], [T]).
Similar results should hold for the other angmented bundles.

Proposition 3.19 Let (£,4) be a holomorphic pair of rank R and degree
d, and let 7 = %. Then (€, ¢) is T-semistable if and only if € splits as
E=0aE,, where £, is a semistable bundle of degree d and rank R— 1, and

@ is a (constant) section of O.
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Proposition 3.20 Let (£, ¢) be a holomorphic pair of rank R and degree d,
and let T € (7w, %) (where Ty is the biggest critical value before %). Then
(€, ¢) is T-stable if and only if £ is a non trivial extension of the form

0 —- 0 —o€—0E —0,
where £, is a semistable bundle of rank R — 1 and degree d.

When there is no upper bound, we have seen above that there are no
more critical values after a certain finite value and the stability condition
“stabilizes”. The description of what happens in this situation, for example
in the case of k-pairs, is given by (3) in Proposition 3.1.
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4. Moduli spaces

Having given the definitions of stability, we can now consider the construc-
tion of the corresponding moduli spaces for the various augmented bundles
discussed in the previous sections. There are many possible approaches, but
in keeping with the rest of this paper we shall concentrate mainly on those
that come from differential and symplectic geometry. In particular we shall
not describe Geometric Invariant Theory constructions. Such algebraic con-
structions apply for rational values of the parameters in the definitions of
stability, and yield projective (or quasi projective) varieties. These can be
found in [Be], [T] (for pairs), [HL] for (k-pairs), and [KN], [LeP1,2],[RV] (for
coherent systems).

We will describe three different moduli space constructions. The first
method is quite general (it generalizes, for example, to augmented bundles
over arbitrary Kéhler manifolds and works for all values of the parameters),
and yields moduli spaces which admit the structure of complex analytic
spaces with compatible Kahler structures away from the singularities. The
method is by now standard and uses the realization of these spaces on
the one hand as complex quotients and on the other hand as symplectic
quotients (Marsden- Weinstein reductions). Of course, one must show that
the two structures are compatible. We will illustrate these techniques in the
case of the moduli spaces of k-pairs, but there is no reason why they cannot
be applied in other cases.

The second construction we will describe is more specific, and gives an
interesting relation between the moduli spaces for k-pairs and those for
k-dimensional coherent systems.

Finally, we will describe a construction which is based on the technique
of dimensional reduction. In particular we will outline how this can be used
to construct the moduli spaces of stable triples as fixed point sets within
larger moduli spaces of stable bundles.

While the role of the parameters is slightly different in each of the meth-
ods discussed - reflecting the various interpretations that can be given to
these (cf. the Introduction to section 3)- the end result is the same. One ob-
tains families of distinct moduli spaces. In the next Section we will discuss

the nature of the dependence of these spaces on the parameters.
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§4.1 k-pairs

Most of what follows is contained in the references [BD1], [BDW], and
[BeDW] to which we refer for more details. For the sake of simplicity we
assume first that £ = 1. Keeping the notation from Section 2, we start with
the construction for the complex quotient of the space of holomorphic pairs,
H, on a bundle E of degree d and rank R. To do this we have to construct
slices for the action of the complex gauge group &c. This can be done at all
points of H which have trivial isotropy group, and this leads to the notion
of simple pairs generalizing the notion of simple bundles. More precisely,

consider the elliptic complex
(C25)  0—Q°(End(E))-2H0%! (End(E)) & Q°(E)-250%! (E)—0
where -
di(uv) = (—Opu,ud)

da(a, 1) = Op(n) + ad .
This complex was first introduced in [BD1]. It can easily be checked that
in all cases HZ(CgE) = 0 (cf. [BDW], Corollary 2.7). We say that the
pair (O, ¢) is simple if it also satisfies H*(C5®) = 0. Then the standard
deformation theory implies
Theorem 4.1. (see [BD1], Corollary 2.9) Let H° denote the subspace con-

sisting of simple pairs. Then H° /®¢ is a complex manifold (possibly non-
Hausdorff) of complex dimension d + (R? — R)(g — 1). Moreover:

T=

.0 (17 10) = H'(CP2) .

In order to put Kahler structures on our moduli spaces we have to realize
them as symplectic quotients. As indicated in Section 2.2, the standard
Kahler form on H C C x Q°(E) is preserved by the action of the real gauge
group & C B¢, and has a B-equivariant moment map given ( see Table 3)
by

(4.) ©,(35,9) = APy, ; —i$® ¢*
For non-critical values of 7, let

B.(d,R) = ¥7'(—ir])/&,
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denote the symplectic quotient. It follows from Uhlenbeck’s weak compact-
ness theorem that B.(d, R) is compact and Hausdorff (cf. [BD1], §5).

For generic 7, we have ¥ (—i7I)/® = V,;/®¢ (cf. section 2), and thus
these two quotient constructions give complementary descriptions of the
same object. Furthermore, by Theorem 2.7, V,/®¢ is homeomorphic to
H: /B¢, where H? denotes the subspace of 7-stable pairs. It is not difficult
to show that r-stable implies simple (cf.[BD1]), and it follows that

Theorem 4.2. (see [BD1], Theorem 5.5) With respect to the complex and
symplectic structures defined above, the moduli space B.(d, R) of T-stable
pairs on E is, for non-critical values of 7, a compact, Hausdorff, Kéhler
manifold of dimension d + (R? — R)(g — 1).

Furthermore, by applying Siu’s criterion for Moishezon manifolds (see

[Siu]), we obtain

Theorem 4.3. (see [BDW], Theorem 6.3) For all non-critical values of T,

B is a non-singular projective algebraic variety.

If £ > 1, then it is no longer automatic that H Z(CEE) = 0. For this we
need to make the following

Assumption 4.4. Assume that d > R(2g — 2). The parameter 7 is called

admissible if

At C k)

R R-1
Under this assumption, it can be shown (see [BeDW], Lemma 3.8) that
T-stability of the k-pair (&; 1, ¢2,...,P%) implies H'(E) = 0, from which
HZ(CEE) = 0 follows. Then Theorems 4.1 - 4.3 above generalize without
difficulty. We thus have

Theorem 4.5. (see [BeDW], Theorem 3.20) For all generic and admissible
values of 7, the moduli space BX(d, R) of T-stable k-pairs on E is a non-
singular projective variety of dimension kd — R(k — R)(g — 1).

As discussed in Section 3, an interesting natural question is the depen-
dence of the holomorphic, Kahler, and topological structure of the spaces
B-(d, R) and BE(d, R) on the parameter 7. We will have more to say about
this in Section 5, however for the moment notice that Proposition 3.16 in-

dicates the existence of a map for 7 near u(E) = d/R

(4.2) BX(d, R) — M(d, R),
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where M(d, R) denotes the moduli space of semistable bundles of rank R
and degree d, given by projection onto the holomorphic structure g. The
map (4.2) indeed exists as a morphism of algebraic varieties, and in the
case where d is coprime to R, B¥(d, R) is the projectivization of the sum
of k copies of the push forward of the universal bundle on X x M(d, R)
by projection onto the second factor, and (4.2) is the bundle projection.
(see [BD1, Theorem 6.4], [BeDW, Propositions 3.25 and 3.26], and also the
discussion below). For the case k = 1, one might regard the map (4.2) as a
higher rank version of the Abel-Jacobi map.

Similarly, if d is coprime to R — 1, then the space B;(d,R) for 7 near
d/R — 1 may be identified with the projectivization of a vector bundle over
M(d, R—1). In this case, the bundle £ corresponds to a non-trivial extension
of a stable bundle F of rank R — 1 by the trivial line bundle (see [BDW],
Corollary 6.5).

When there is no upper bound - for example, when ¥ > R and 7 >
d > R(2g — 2) (see Proposition 3.1 (3)) - it is shown in [BeDW] that the
moduli space of 7-stable k-pairs has the structure of a projective variety
which compactifies the moduli space of holomorphic degree d maps from
X to the Grassmannian of complex R-planes in C¥. This result is not
obtained from the gauge theoretic discussion presented here, however, due
to the singularities (see Assumption 4.4), but rather from a construction of
Grothendieck.

A second important property of the spaces B,(d, R) and BX(d, R) is that
they are fine moduli spaces. What is needed to prove this is a construction
of universal objects. Again we will outline the construction for k¥ = 1, the

generalization to k-pairs being straightforward. Let
P :X><C><Q°(E)—>X

denote the projection onto the first factor. Let U, = pri(E) be the pull-
back bundle with its tautological holomorphic structure (cf. [AB]), and
let & denote the tautological section, which is evidently holomorphic (see
[BeDW , Section 3.2]). By restricting to X x HZ, it follows that &¢ acts
freely on both the base and on U, and that & is equivariant with respect
to this action. It follows that U, descends to a vector bundle Ur(d,R) on
X xB.(d,R), and & descends to a holomorphic section ® of U,.. These form

a universal pair in the following sense:



48 BRADLOW et al: Stable augmented bundles

Theorem 4.6. (see [BeDW], Proposition 3.30) For non-critical values of
7, there is a pair (U,(d, R), ®) on X x B.(d, R) satisfying the property that

(Uf(dv R)v ¢)|Xx(55;,¢) = (87 ¢) .

A similar statement holds for k-pairs.
84.2 Coherent Sytems

Definition 4.7. Given a fixed bundle E — X, and parameter a, let
BS5(k) denote the space of isomorphism classes of a-stable k-dimensional
coherent systems on E.

In this section we will exhibit the symplectic structure on BSS(k), and
show how the relationship (described in Section 2.2) between coherent sys-
tems and k-pairs can be used to describe BSS(k) as a complex analytic
space with a Kahler structure.

Recall that with moment maps ¥y : H¥ — g* and Upg : HES — g* as
in Section 2.2, we have B¥ = ¥ '(—itI)/® and BS5(k) = ¥5g(—itI)/®,

— k
where 7 = p(E) + O ank®” Recall also that we have a moment map
U:HY — g* B u(k)*
given by ¥ = (¥, Py) (cf. equation (2.7)) for the action of the product
& x U(k). It follows from the definitions that
Proposition 4.8, Let a and 7 be related by (2.6c). Then
Vo(—itl)/® = VY (—irI,—ial)/® x U(k) .

The reduction by the product & x U(k) can be done in stages in two
different ways. To obtain the description in (2.3) we first reduce by the U(k)
action to get HCS = ¥y ())/U(k), and then take a symplectic quotient by
the action of the gauge group &. On the other hand, starting with the
action of the gauge group, the first reduction produces B¥ as the quotient
W '(—irI)/®. The residual U(k) action descends to this quotient, where it
acts symplectically with respect to the induced symplectic form. Let

Uy : B — u*(k)
denote the moment map for this action on BX. This is evaluated at a point
[8; D1, P2y -y ¢’k] in T;l(—iTI)/G by
WU([“:; é1, 92, - 7¢k]) = \I/U(g;¢17¢27"' 7¢k) )
where U (€; é1,¢02,...,0x) = —iTL. We thus find
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Corollary 4.9. Fix 7 € R and take a such that the relation (2.6c) is

satisfied. Then
BSS(k) = Ty (~iad)/U(k) .
That is, B$S(k) is a symplectic reduction of BX by the action of the unitary
group.
By standard methods (see for example [Ki]) it follows that the reduced
space Tl_,l(—ial) JU(k) has the structure of a complex analytic space with

a symplectic structure away from the singularities, and hence

Theorem 4.10. For admissible « (i.e. corresponding to admissible 7) the
moduli space BS(k) of a-stable coherent systems on X is a complex ana-

Iytic space with a Kahler structure away from the singularities.

§4.8 Moduli space of stable triples
In this section we shall sketch a construction for the moduli spaces of
triples based on the fact that a triple can be regarded as a “dimensional
reduction” of a certain SU(2)-equivariant vector bundle over X x P!. More
precisely, as shown in Section 1.3, one can associate to a triple (&, &2, @) a

holomorphic bundle over X x P! of the form

(4.3) 0 —p& —F—p'&R0°012) —0.

Consider the action of SU(2) on X x P!, given by the trivial action on X
and the standard one on P'. This action can be lifted to the trivial action on
p*& and p*&; and the standard one on ¢*O(2). On the other hand SU(2)
acts trivially on the extension class of (4.3)—since this is essentially ®—and
hence we can lift the action of SU(2) to a holomorphic action on the whole
F, which becomes in this way an SU(2)-equivariant vector bundle.

This construction allows one to interpret the stability of (&, &, ®) in
terms of the Mumford-Takemoto slope-stability of F. Notice that since the
base manifold of F is of complex dimension 2, in order to talk about the
stability of F one needs to fix a Kahler metric on X x P!. The parameter
7 (or equivalently «) is encoded in this choice of metric.

Let us choose a metric on X with Kahler form wx, and volume normalized
to one. The metric we shall consider on X x P! will be the product of the
metric on X with a coeficient a/2, with a > 0, and the Fubini-Study metric
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on P! with volume also normalized to one. The Kahler form corresponding

to this metric is

_a* *
wa—EpwxEquum.

The precise relation between the stability of (&1, &2, ®) and that of F is

given by the following theorem.

Theorem 4.11. [B-GP, Theorem 4.1] Let (&;,&2,®) be a holomorphic
triple over a compact Riemann surface X. Let F be the holomorphic bundle
over X x P! associated to (&1, &;, ®), and let

(44) a(T) - (Rl + RZ)T - g:eg &+ deggz) .
2

Suppose that £ and & are not isomorphic. Then (&,&z,®) is T-stable
(equivalently a-stable) if and only if F is stable with respect to wy. In the
case that £ = & = £, the triple (€, £, ®) is T-stable (equivalently a-stable)

if and only if F decomposes as a direct sum
F=p'€0q0(1)0p' €0 0(1),

and p*€ ® ¢*O(1) is stable with respect to wq.

Let F be the smooth underlying bundle of F in (4.3), and let M, be
the moduli space of stable holomorphic structures on F with respect to wq.
Let us assume first that either Ry # R; or d; # d3. As a result of Theorem
4.11, there is a map

(4.5) BT — M,,

where a is related to 7 by (4.4). The action of SU(2) on X x P! de-
fined above induces an action on M, and since the bundle F associated to
(&1,&2,®) is SU(2)-equivariant the image of the above map is contained in
MSEU® _the set of fixed points of M, under the SU(2) action. As proved
in [GP, Proposition 5.3] the set M SU® can be described as a disjoint union

of a finite number of sets

M = | M,
i€l
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where the indexing set I ranges over the set of equivalence classes of different
lifts of the action of SU(2) on the smooth bundle underlying F in (4.3). In
fact BT can be identified via the map (4.5) with a subset M of the fixed-
point set, where ig is the lift defined at the beginning of the section.

If Ry = R; = R and d; = d; = d by Propositions 3.7 and 3.8 we can
identify B,T_'(d, R;d, R) with the moduli space of stable bundles of rank R
and degree d on X.

This construction enables us to apply standard facts about the more
familiar moduli spaces of stable bundles M, (cf. [G],[M],[Ko]), and more
particularly of the fixed-point sets M?, (see [GP, Theorem 5.6] for details),
as well as the much studied moduli spaces of stable bundles over a Riemann

surface, to obtain the following result.

Theorem 4.12. [BGP, Theorem 6.1] Let X be a compact Riemann surface
of genus g and let us fix ranks R, and R, and degrees d; and d2. The moduli
space of T-stable triples B,T(dl, Ri;d3, Ry) is a complex analytic space with
a natural Kéhler structure outside of the singularities. Its dimension at a

smooth point is
1+ Redy — Ridz + (R} + R} — RiRp)(g — 1) .

The moduli space BY(dy, R1;da, Rz) is non-empty if and only if T is inside
the interval
(1(Er), pmax)

where

R,
pmax = p(E1) + m——}“( 1(Er) — p(Ez))
if Ry # Ro, and pyax = oo if Ry = Rp. Moreover BY(d,, Ry;da, Ry) is
in general a quasi-projective variety. It is in fact projective if Ry, + R, and

dy + d; are coprime and T is generic.

Remark. From the construction of the moduli space of triples one can in
fact obtain the moduli space of stable pairs. To do this we choose E; = L to
be the trivial line bundle and E; = E of rank R and degree d. The moduli
space BY(d, R;0,1) is almost the moduli space of stable pairs BY(d, R).
Recall that a triple (£, £, ®) is T-stable if and only if the pair (€ ® £*, ®) is
r-stable. The Picard group of X acts on BI by the rule

UEL,®) = (EQU*, LRU",B),
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for U € Pic’(X), and it is clear that BP(d, R) can be identified with
BZ(d, R;0,1)/Pic®(X).

The action of Pic?(X) is free and proper and we can recover Theorem 4.3
as a corollary of Theorem 4.12. The smoothness of Bf(d, R) follows from

the following proposition.

Proposition 4.13. [BGP Proposition 6.3] Let (&,&2,®) be a T-stable
holomorphic triple such that ® is injective, then [(€1,&2,®)] is a smooth
point of the moduli space BT .

84.4 The topology of the moduli spaces

To end this section, we will make some remarks concerning the topology
of the moduli spaces described above. Dating back to the fundamental work
of Atiyah and Bott on Yang-Mills equations over Riemann surfaces [AB],
it has been recognized that the topology of certain moduli spaces is closely
related to properties of certain associated functionals (see also [D], [Ki]).
For example, it is shown in the references cited that the Betti numbers of
the moduli of vector bundles can be calculated from the Morse theory of
the Yang-Mills functional

IV=TAF5,  — ulls

on the space C of O-operators on E. In all the examples of augmented
bundles described in this paper one can replace the Yang-Mills functional
by the norm square of the corresponding moment map. For example, for
pairs we take

IV=1AF5, , + ¢ ® ¢* — 71|17

on the space H of holomorphic pairs. It follows from [AB] and [D] that
the Yang-Mills functional is a perfect Morse function, and by the results of
[Ki] it is quite plausible that the same is true in the other cases as well.
However, unlike the Yang-Mills functional, in the other examples the topol-
ogy of the domain of definition of the functional may not be known. This
excludes using an inductive formula for the cohomology as in [AB]. This
problem arises, for example, with Higgs bundles, where to our knowledge
the cohomology for the non-coprime case has yet to be calculated (cf. [H],
[Go]).

In the coprime case, our moduli spaces admit a locally trivial fibration

(for minimal 7) over the moduli of vector bundles with compact fiber (see
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(4.2)), and one can therefore make use of the Serre spectral sequence. In
the non-coprime case, while the map (4.2) still exists, some fibers are very
complicated and not much can be said in general. However, one can com-
pute certain low dimensional homotopy and homology groups by use of
transversality theory as described in [DU]. For example, for pairs we have

the following

Theorem 4.14. (cf. [BD2], Theorem 3.13) Assume that i < 2(R —1)(g —
1) — 2 and that 7 is in the minimal range. Then for rank R, r-stable
pairs on a Riemann surface of genus g, 7;(B;) =~ 7;_1(®). In particular, if
(R,9) # (2,2), then my(B;) ~ Hy(X,Z) ~ Z?9, and m2(B,;) ~ Z & Z.

One should be able to proceed for non-minimal 7 by using the birational
transformations described in the next section.

We expect that transversality results of this type can be generalized in
all the examples of augmented bundles to compute the low dimensional ho-
motopy and cohomology groups of their moduli spaces, though this remains
to be carried out. We also mention that the case of parabolic bundles (see
Section 6) was treated with these techniques in [DW] and [P].

5. Master spaces

In this section we briefly outline the argument given in [BDW] which pro-
vides a framework for understanding the dependence of the moduli spaces
B, on the parameter 7. In part, the motivation comes from the work of
Thaddeus [T] in which he gives an explicit description for how the spaces
B, change as T passes through a critical value. His characterization, which
is in terms of specific modifications along smooth subvarieties is a refine-
ment of the results of Bertram [Be] on a resolution of the rational map from
the space of extensions (the “large 7” moduli space) to the moduli of bun-
dles. The method gives a useful way of computing quantities on one space
B by moving them over to another B,s, where the calculation is possibly
simpler, and keeping track of the changes. This technique was used in [T]
to give a proof of a special case of the Verlinde formula and in [BeDW] to
compute certain intersection numbers for the space of holomorphic maps
from Riemann surfaces to Grassmannians.
§5.1 Reduction by a subgroup
For simplicity, we shall mostly deal with case of stable pairs, although the
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construction we describe is more general, and versions for k-pairs, coherent
systems, and triples are possible. The basic idea is that one would like
to realize the parameter 7 as the Morse function for a circle action on
some larger Kahler manifold (dubbed a “masterspace”), which in some sense
parametrizes all stable pairs, and not just the pairs which are 7-stable for
some particular choice of 7.

To this end, one notices that there is an obvious choice of circle action;

namely, multiplication of the section
(5.1) e?(£,8) = (£,¢%9) .

This is similar to the circle action on the moduli space of Higgs bundles [H].
Note, however, that the action (5.1) is trivial on the moduli space B, since
it can be realized by an element of the gauge group &, and on the infinite
dimensional space H of holomorphic pairs the action is free. In order to get
something interesting we need to separate the action (5.1) from the rest of
the gauge group.

The trick now is to find a closed subgroup ®y C ® whose quotient is
S! acting as in (5.1). The master space B will then be taken to be the
reduction of H by &g. Since Bisto parametrize stable pairs for any choice

of 1, it is clear that the moment map for the &, action on H should be
(5.2) T =t (AF5, 4 —id®4") ,

where 7+ denotes the orthogonal projection in Lie & to the space perpen-
dicular to the constant multiples of the identity (see Table 2). Thus, looking
at the complex gauge groups, we should find 8% C G¢ such that

Lie(®2) = {u € Q°(End(E)) : /Xtr u= 0} .

This is obtained as follows. Let &¢,; C &¢ denote the connected component
of the identity, and let T denote the quotient group of components. Then
T is a free abelian group on 2g generators corresponding to H1(Z,Z) (see
[A-B], p. 542). We can find a splitting of the exact sequence 1 — &¢,; —
®c — T — 1, and this realises B¢ as a direct product &¢c ~ &¢,; x T,
with the isomorphism given by (g, k) — gh. For g € &¢,1, the map detg :
Y — C* is in the identity component of Map(X,C*). It thus lifts to a
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map u € Map(X,C), and we can define a character x : 8¢; — C* by
x(g) = e:cp(f): u). Then we extend x to &c; x T by x(g,h) = x(9)-
This defines a homomorphism &c — C*. We let B¢y be the kernel of the
character x : &¢c — C*, and let 89 C & be defined by &y = &y N &. The

remainder of the following proposition follows directly.

Proposition 5.1. (see [BDW], Section 2) There exists a closed subgroup
B2 C B¢ with quotient C* whose Lie algebra is as above. The action of
B9 = B2 NG on H is holomorphic and symplectic, and the Ad-invariant
moment map for this action is given by (5.2). Moreover, a pair (£,¢) € H
lies in the zero set of ¥y if and only if it admits a solution to the T-vortex

equation for some T.

Therefore, the space B = ¥5(0) /®o is the masterspace we desired. Let
By C B denote the quotient by B¢ of the subset of ¥;'(0) where B acts
with at most finite stabilizer. Then by arguments similar to those in Section

4, we have

Proposition 5.2. ([BDW], Proposition 2.3) B is a compact, Hausdorff
topological space. By is a Hausdorff, Kahler V-manifold.

The quotient group S ~ &/By now acts holomorphically and symplec-
tically on By by

(5'3) ew[‘gv ¢] = [87 gt9¢] ’

where gp = diag(e’®/E,. .., e"®/R). Moreover, it can now be checked (see
[BDW], Proposition 2.17) that a moment map for this circle action is given
by

(5.4 s, ) = —2ni (L1204 e .

Finally, the principle of reduction in stages makes it clear that for non-
critical values of 7, f~!(7)/S! ~ B,. Thus, we have achieved our goal of
realizing 7 as the moment map of a circle action.
§5.2 Morse flow and birational maps
Next we analyze the fixed points of the circle action (5.3). These are
precisely the critical points of f. For simplicity and for the rest of this

section, we shall restrict our attention to the case of rank 2 bundles. In
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that case, the moment map f on By is proper, the circle action is quasi-free,
and Bo is a manifold. Also, it follows from the results in Section 3 that the
range of 7 is the interval [d/2,d], and the critical values between the two
extremes are precisely the integers between d/2 and d.

Suppose then that [€,4] € By and e*[€,¢] = [€,4]. Then there must

exist a gauge transformation g € & such that

g(gv ¢) = (gc‘:,gtﬁ) = (87 ei0/2¢) .

Since g € B2, it cannot be a constant scalar endomorphism, and since as
mentioned above stable implies simple, the bundle £ must therefore split
holomorphically as £ @ &, where £, and £, are holomorphic line bundles,
¢ € H°(&), and g = (e**/2,g,). Again using the fact that g € B2 one
deduces that g, = e 7%/, Also, since (£, ¢) gives rise to a solution of the 7-
vortex equation, we must have deg(€,) = ; in particular, such a fixed point
can only occur for integral values of 7 (for higher rank, critical values can
only occur for 7’s which are possible slopes of subbundles, i.e. at precisely
the non-generic values of 7 discussed in Section 3). We summarize this

discussion with the following

Proposition 5.3. Consider the case R = 2. Then the critical values of
f on 3, other than the maximum and minimum, occur at precisely all the
integer values of T in (d/2,d). The critical sets Z, are of the form

Z,=8""(X)x Jr,

where S47(X) denotes the d — T symmetric product of X, and J, is the

degree T Jacobian variety of X.

The Kahler metric on By and the circle action (5.3) induces a gradient

flow
@t B Bo X [0,00) e Bo
defined by the equation

g
th = —Vq»‘f .

It can be verified (see [BDW], Proposition 5.1) that ®, is given by

(5.6) Bi[E, 4] = [€,e7/479].
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The flow is invariant under the circle action, and so if there are no critical
values in the interval [r,7 + €], then ®; descends to give a diffeomorphism
of the quotients B, ~ B;4.. Moreover, since the action is holomorphic, this
diffeomorphism is actually a biholomorphism. Hence, the only difference
between B, and B+, is in the induced Kahler structure. This is the familiar
picture which arises in the Duistermaat-Heckman theorem.

Now let us consider what happens when there exists an intermediary
critical value. Let 7 be an integer in (d/2,d), and let W?, W* denote the
stable and unstable manifolds of the critical set Z, with respect to the flow
(5.6). The two stratifications of By obtained from the stable and unstable
manifolds correspond to algebraic stratifications which are the analogues
of the Seshadri filtration for semistable bundles. For the details of this
description we refer to [BDW], Section 4. Here, we simply state the result
for rank 2. The set of points in W} which flow into a point [£, ® E,, §] € Z,

are the B equivalence classes of pairs (£, ¢) arising from extensions
0 —& —&—E —0,

where the section ¢ € H®(€) is induced from the section of £, by the
injection. The stable manifold W consists of equivalence classes of pairs

(€, ) arising from extensions
0 — & —E€—& —0,

where the section ¢ € H%(€) projects to ¢ € H*(&,).

Now suppose that 7 is the only critical value in [T — €,7 4+ ¢]. In that
case the spaces Br_., Br4. are symplectic reductions of Bo by the S!-
action. Guillemin and Sternberg studied the appropriate generalization of
the Duistermaat-Heckman theorem to this situation [GS]. The result is that
the passage from B;_. to B4, is via a modification by surgery on a sphere
bundle, modulo the circle action. This is more or less Kodaira’s description
of a blow-up, and it is explained in the context of stable pairs in [T] (also
see [D3]). Specifically, we have the following: Let

P (W) =W f(r+¢)/S
PW™)=W=*n fl(r-¢)/S.

Then we have
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Theorem 5.4. ([T], and [BDW], Theorem 6.6) Suppose that € (d/2, d)
is the only critical value of f in the interval [r — ¢,7 + ¢]. Then there is a
projective variety B, and holomorphic maps

8,
- N
Br—e Br+e
Moreover, for < d— 1, p+ are blow-down maps onto the smooth subvari-
eties P.(W*). Forr = d—1, p4 is the blow-down map onto P, (W) and
p— is the identity.

Theorem 5.4 should in principle apply also in higher rank. The method
in [BDW] breaks down because of the existence of singularities in the critical
sets which occur for certain values of 7. For these 7, one therefore expects

a slightly more complicated modification than the one above.
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6.0ther Augmented Bundles

In this section we shall comment briefly on other examples of augmented
bundles. Some of them had been studied prior to the ones described above;
this is the case for parabolic bundles and bundles with a level structure.
Other examples are obtained by combining a parabolic structure with one of
the augmentations studied above. This leads to the study of parabolic pairs,
parabolic Higgs bundles and parabolic triples.

86.1 Parabolic bundles
The notion of parabolic bundle was introduced by Seshadri (cf. [Sel,Se2])
and has been studied extensively in [Sel,MS,Bhol, BhoR] among others. Let
I be afinite set of points and £ be a holomorphic vector bundle over a compact
Riemann surface X. A parabolic structure on £ consists in giving for each
point of [ a filtration of the fibre &,;:

ga: = Fl(ga:) D..D Fnz(ga:) ) 07
with “weights”
0 ap < ... <ayp, <.

For each point we have the multiplicities
kei = dim(F,(&)/ Fin(€2)),

and we can define the parabolic degree and the parabolic slope:

pardeg(€) = deg(€) + Y, i ki,

xeli=1

par u(€) = %efg)-

One can define natural morphisms between parabolic bundles. Moreover, ev-
ery subbundle £ C £ inherits a parabolic structure from that of £, becoming
a parabolic subbundle.

Definition 6.1 A parabolic bundle £ is stable if for every subbundle £&' C €

par p(€') < par p(£).

These definitions have been generalized by Bhosle to parabolic sheaves on
higher dimensional smooth varieties (cf. [Bho2,MY]) and also to parabolic
structures defined over divisors of degree greater than 1 [Bho3]. Parabolic
bundles can be considered as augmented bundles in which the filtrations
defining part of the parabolic structure constitute the augmentation, and the
weights are parameters in the definition of stability. The analytic treatment
of parabolic bundles requires non-compact Riemann surfaces , but it can be
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shown that stable parabolic bundles do support special metrics which satisfy
equations similar to the Hermitian-Einstein equations (cf. [Bi,MS,P,DW,Si2]).
The special structure is reflected now in the fact that the connection of this
metric has logarithmic poles at the parabolic points, with coefficients deter-
mined by the weights.

One can consider all the augmented bundles studied above in the category
of parabolic bundles. Some special cases of pairs and coherent systems on a
bundle with parabolic structure have been studied in [Be]. Parabolic triples,
that is triples in which the bundles are endowed with parabolic structures are
considered in [BiGP]. The homomorphism can be either a parabolic morphism
or a meromorphic morphism with simple poles at the parabolic points and
whose residues respect the parabolic structure in some precise sense. In both
cases one can prove a Hitchin-Kobayashi correspondence, and again the met-
rics involved now have singularities at the parabolic points. Finally, parabolic
Higgs bundles have been the object of study in [Bi,Y,Si2] for example. These
are pairs consisting of a parabolic bundle and a twisted endomorphism, pre-
serving the parabolic structure. The moduli space of parabolic Higgs bundles
is relevant for example in connection to the deformations of the moduli space
of parabolic bundles. In particular, it contains the cotangent space of the
moduli space of parabolic bundles, generalizing the non-parabolic situation

(cf. [Hi]).

§6.2 Bundles with a level structure
Let D be a zero-dimensional variety of a compact Riemann surface X with
structure sheaf Op, and let £ be a rank R holomorphic vector bundle on X.
A level structure on £ consists of a non-zero sheaf morphism

P:£— R.OD.

A level structure can also be regarded as a k-coherent system with k£ equal
to R (see [LeP1,2] for this point of view). Seshadri (cf. [Se2]) introduced a
notion of stability for (£, ®), which does not involve, however, any parameter.
The existence of a parametrized notion of stability for a level structure has
been detected by Huybrechts and Lehn [HL], who have in fact studied a
generalization of a level structure for a smooth projective variety of arbitrary
dimension. They consider pairs (€, ®) consisting of a coherent sheaf £ and
a homomorphism ® : £ — & to a fixed coherent sheaf & (which might be
of pure torsion). As mentioned in section 1.5, these pairs can be regarded as
specialized triples (&, &2, ®) in which & is fixed.
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0. INTRODUCTION

We report on some recent progress in the classification of smooth projec-
tive varieties with small invariants. This progress is mainly due to the finer
study of the adjunction mapping by Reider, Sommese and Van de Ven [Sol],
[VAV], [Rei], [SV]. Adjunction theory is a powerful tool for determining the
type of a given variety. Classically, the adjunction process was introduced
by Castelnuovo and Enriques [CE] to study curves on ruled surfaces. The
Italian geometers around the turn of the century also started the classifica-
tion of smooth surfaces in P* of low degree. Further classification results are
due to Roth [Rol], who uses the adjunction mapping to get surfaces with
smaller invariants already known to him (compare [Ro2] for adjunction the-
ory on 3-folds). Nowadays, through the effort of several mathematicians, a
complete classification of smooth surfaces in P* and smooth 3-folds in P°
has been worked out up to degree 10 and 11 respectively. Moreover, in the
3-fold case the classification is almost complete in degree 12. For references
see section 7.

One motivation to study these varieties comes from Hartshorne’s conjecture

[Hal]. In the case of codimension 2 this suggests that already smooth 4-
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folds in P® should be complete intersections. Another motivation originates
from two mutually corresponding finiteness results. Ellingsrud and Peskine
[EP] proved that there are only finitely many families of smooth surfaces in
P* which are not of general type. However, the question of an exact degree
bound dy is still open. By [BF] dy < 105. Examples are known only up to
degree 15 and one actually believes that dy = 15. The analogous finiteness
result holds for 3-folds in P5 [BOSS1]. In this case one expects a much
higher degree bound. Nevertheless examples had been known so far only
up to degree 14 [Ch3]. In this note we present, among other things, three
new smooth 3-folds in P° of degree 13,17 and 18 respectively.

How to construct examples ?

Let us recall that every smooth projective variety of dimension m can be
embedded in P2™*!, So, for example, in the surface case we could try to
work with general projections from points in P°. However Severi’s theorem
[Se] tells us that every non-degenerate smooth surface in P* except the
Veronese surface is linearly normal. Similarly by Zak’s theorem [Za] every
non-degenerate smooth 3-fold in P* is linearly normal.

There are two other classical construction methods. One is to study linear
systems on abstract varieties. This works especially well for rational, abelian
and bielliptic surfaces. The other is liaison [PS] starting with a known local
complete intersection variety (presumably of lower degree). With a few
exceptions these methods failed to produce examples in higher degree. In
the case of liaison this is mainly due to the fact that the varieties to be
constructed tend to be minimal in their even liaison class (compare [LR]).
Whereas, if we consider, for example, linear systems of curves on minimal
surfaces, the base points have to be in a special position. Such configurations
are hard to find.

In this context a new construction method for surfaces X C P* (more
generally (n — 2)-folds X C P™) was introduced in [DES] (compare also
[Po]). The basic idea is an application of Beilinson’s spectral sequence
[Bei]: to construct the ideal sheaf Jx and thus X one has to construct the
Hartshorne-Rao modules of X first. Involving corresponding syzygy bundles
as suggested by the spectral sequence one finds vector bundles F and G on
P* with tk § = rk F + 1, and a morphism ¢ € Hom(F,§), whose minors
define the desired X. From the syzygies of the Hartshorne-Rao modules
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one can compute the syzygies of Jx and so the explicit equations for X.
Typically, part of the geometry behind X can already be seen from the
syzygies. The smoothness of X can be checked via the implicit function
theorem, i.e., by a straightforward computation. Since these computations
are very extensive one has to rely on a computer and a computer algebra
system. Currently, Macaulay [Mac] is the only system which is powerful
enough to handle the computations.

In some cases X is not minimal in its even liaison class, or a minimal
element in the complementary even liaison class has low degree and can be
identified. In fact, by studying the equations we find examples where X can
be reconstructed via liaison from a reducible scheme X’ of lower degree. It

is hard to find such reducible schemes a priori.

Problem. Find a geometric construction for all examples constructed via
syzygies. O

Notation. R = C[zg,...,z,] = @ S?V* will be the homogeneous co-
g€z

ordinate ring of P", so H(Op=(1)) = V*. If X C P" is a fixed smooth
subvariety, then d will denote its degree, « its sectional genus, H the hy-

perplane class and K the canonical class. O

Acknowledgements. Both authors are grateful to Frank-Olaf Schreyer
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support and Masaki Maruyama and the University of Kyoto for their hos-
pitality. Last but not least we would like to thank the organizers of the
Durham symposium on Vector Bundles in Algebraic Geometry for creating
a stimulating atmosphere during this meeting. O

1. CONSTRUCTIONS VIA SYZYGIES

Following [DES] we want to construct a codimension 2 subvariety X C P" as
the determinantal locus of a map between vector bundles. So we are looking
for vector bundles F and G on P* with tk F= fandrtk S = f+ 1, and a
morphism ¢ € Hom (¥, §) whose minors vanish in the expected codimension
2. In this case X = V() is a locally Cohen-Macaulay subscheme and the
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Eagon-Northcott complex [BE]

f f+1
0 0x(m) =~ Om2AFT*@ \NG-5ELF0

is exact and identifies coker ¢ with the twisted ideal sheaf
coker ¢ = Jx(m), m=c§—-7.

Furthermore, a mapping cone between the minimal free resolutions of F
and G is a (not necessarily minimal) free resolution of dx(m). So for a
given @ we can derive an explicit system of homogeneous equations for its

dependency locus X.

Remark 1.1. Let ¢;,92 € Hom(F,§) be morphisms whose minors van-
ish in codimension 2. Then V(y;) and V(p2) lie in the same irreducible
component of the Hilbert scheme (compare e.g. [BB], [BBM], [MDP]). O

To construct a variety with the desired numerical invariants one has to find
appropriate F and §. Clearly F and § reflect the structures of the graded
finite length R-modules
Hidx = @H'(P",dx(¢)), i=1,...,dim X,
q€Z

called the Hartshorne-Rao modules of X. E.g., X is projectively Cohen-
Macaulay, i.e., its Hartshorne-Rao modules are trivial, if ¥ and § can be
chosen to be direct sums of line bundles. Or compare [Ch2| for the -
resolution of a projectively Buchsbaum variety. In this case, in particular,

the multiplication maps of the Hartshorne-Rao modules are trivial.

Remark 1.2. Smooth projectively Cohen-Macaulay and smooth projec-
tively Buchsbaum varieties of codimension 2, which are not of general type,
are completely classified (compare [Ch3]). O

In any case it is a natural idea to construct the Hartshorne-Rao modules
first. Then one may involve corresponding syzygy bundles as direct sum-
mands in order to find ¥ and §. Recall:

Proposition 1.3. Let M = @ M, be a graded R-module of finite length

g€z
and let

Oi—'Mi—'L()&Ll i—'...ain—"‘.an.Hi—'O



DECKER & POPESCU: On surfaces in P* and 3-folds in P5 73

be its minimal free resolution. Then, for 1 < ¢ < n—1, the sheafified syzygy
module
Fi = Syzi(M) = (ker o)™ = (Im a;41)~

is a vector bundle on P" with the intermediate cohomology

g€z 0 j#: 1<j<n-1

, M ;=1
@HHP”,&*;@)):{ ey

Conversely, any vector bundle F on P" with this intermediate cohomology
is stably
equivalent with J;, i.e.,

F=F,0L, L a direct sum of line bundles. a

Example 1.4. Consider C as a graded R-module sitting in degree 0. The
minimal free resolution of C(¢) is the Koszul complex

o n+1
0C@) « A\V'®R(t) — - — \ V'®@R(i—n—1) 0.

The corresponding syzygy bundles are the twisted bundles of differentials,
Syzi(C(i)) = Q'(i) . It follows from the sheafified Koszul complex, that
Hom (£2°(4), Q7(j)) = /\i_j V , the isomorphisms being given by contraction
(cf. [Bei]). O

Which syzygy bundles should be involved in the construction of ¥ and G ?
This can be found out by analyzing Beilinson’s spectral sequence for Jx(m).
Recall:

Theorem 1.5. [Bei] For any coherent sheaf § on P* there is a spectral
sequence with E;-terms

E}? = H*(P",8(p)) @ 27P(-p)
converging to 8, 1.e., E?! =0 for p+ q # 0 and @ EZP? is the associated
graded sheaf of a suitable filtration of §. O

This theorem is often used to construct § by determining the differentials

of the spectral sequence first. A crucial point is that the d;-differentials

d}? € Hom (H'(P",8(p)) ® 2 77(~p), H'(P",8(p +1)) @ Q"7 (—p-1))
= Hom (V* ® H!(P™,8(p)), HI(P",8(p +1)))
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coincide with the natural multiplication maps. In our case § = Jx(m), and
we will interpret one part of Beilinson’s spectral sequence as the spectral
sequence of a vector bundle JF, the other part as that of a vector bundle G.
The differential between the two parts will give the morphism ¢ : F — §
whose cokernel is the desired Jx(m). The twist m will be mainly norn—1
(compare [DES, 1.7] for the corresponding Beilinson cohomology tables in

the surface case).

How to check the smoothness of X ? If the bundle Hom (¥, §) is globally
generated and n < 5, then we know from [Klm], that the generic ¢ €
Hom (J,§) gives rise to a smooth X. This works well, if X is projectively
Cohen-Macaulay. Similarly, if X is projectively Buchsbaum, we may apply
[Chl]. In the general case however, we mostly have to rely on a computer

as explained in the introduction.

Example 1.6. We will construct a family of smooth 3-folds X C P® with
the numerical invariants d = 18, = = 35, x(Ox) = 2 and x(0s) = 26, where
S is a general hyperplane section of X. Let us analyze Beilinson’s spectral
sequence for Jx(4). We first need information on the dimensions h'Jx(m),
m = —1,...,4. In view of Riemann-Roch a plausible Beilinson cohomology
table is

24

3

m
Suppose that a smooth 3-fold X with these data exists. Then Beilinson’s

theorem yields an exact sequence
0—-F=240(-1)—= G —-9dx(4)—0,

where § is the cohomology of a monad

-4

d ,8 d 8
0—-0%4) > 602%3) > 3Q%2)—0.
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On the other hand, the generic module with Hilbert function (1,6,3) has
syzygies of type

0~ M — R(4)

N 18R(2) — 52R(1) — 60R _ 24R(-1)
<

AN

10R(=2) > 12R(=3) = 3R(=4) — 0

A check on the ranks and the intermediate cohomology of § and Syz3(M)
suggests that conversely it is promising to start with F = 240(—1) and
G = 8yz3(M). Indeed, for the map ¢ € Hom (240(—1),8yz3(M)) given by
the syzygies, one can check that the minors of ¢ vanish along a smooth

3-fold X. By construction dx has syzygies of type
0 — dx « 100(—6) « 120(—17) « 30(—8) « 0.

In particular, X is cut out by 10 sextics. From the syzygies it follows that
wx(1) = Ezt2(0x,0(—6))(1) is a quotient of 240, and since (K + H)? - K =
—4 (compare section 5) we deduce that the Kodaira dimension k(X) = —oo0.

0

2. LIAISON

We recall the definition and some basic results [PS]. Let X, X’ C P" be
two locally Cohen-Macaulay subschemes of pure codimension 2 with no ir-
reducible components in common. X and X' are said to be (geometrically)
linked (r,s), if there exist hypersurfaces V; and V3 of degrees r and s re-
spectively, such that X U X’ = V; NV, . Then there are the standard exact

sequences
0—wx = O0ynp(r+s—mn—-1)—=0x(r+s—n—-1)—0,
0-owx—=0x(r+s—n—-1)—=0xnx/(r+s—n—-1)—0.
The degrees and sectional genera of X and X' are related by
d+d =r-s and 7r—7r'=%(r+s—4)(d—d’),

and
x(0x) = x(Ov;nv,) —x(Ox(r +s—n—1)).
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Under suitable assumptions (e.g., if H*(F(r)) = HY(F(s)) = 0) we may
deduce from a given locally free resolution 0 = F =+ G —=Jdx — 0of Jx a

resolution
025G (-r—8)=2F(—r—5)00(-r)d0(—3) = Jx — 0

of dx/ by taking a mapping cone as in [PS, Prop. 2.5]. Moreover, the
Hartshorne-Rao modules of g x+ are C-dual to those of X:

(Hr'=9x)" = (Higx)(n+1=r—s), i=1..,n-2.

Liaison can be used to construct new subvarieties starting from given ones.
Hence it is useful to know, under which conditions a residual intersection will

be smooth. One result in this direction is a special case of [PS, Prop.4.1]:

Theorem 2.1. (Peskine-Szpiro). Let X C P", n

plete intersection of codimension 2. Let m be a twist such that Jx(m)

< 5, be a local com-

is globally generated. Then for every pair dy,d2 > m there exist forms

fi € H%3x(d;)), 1 = 1,2, such that the corresponding hypersurfaces V;
and V> intersect properly, V1 N Vo = X U X', where
(i) X' is a local complete intersection,

(ii) X and X' have no common component,

(iii) X' is nonsingularoutside a set of positive codimensionin Sing X. O

3. ADJUNCTION THEORY

In this section (X, H) will denote a polarized pair, where X is a smooth,
connected, projective variety of dimension m > 2 and H is a very ample
divisor on X. K = Kx will be a canonical divisor on X. Before reviewing
the general theory behind the adjunction map ® = ¥k (m-1yn), we will
give an example.

Example 3.1. [Roo] Let p = (yj )0<i<2 be a general 3 X 4-matrix with

0%5%3

linear entries in C[zy,...,z4]. Then X = V() is a smooth surface X C P*
with d = 6 and # = 3. Let H be the hyperplane class of X. By dualizing

¥, we obtain the resolution

0 — wx(1) « 30 £ 40(=1) — O(—4) — 0 .
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So |K + H| is base point free, N = dim |K + H| = 2 and we have a well-
defined adjunction map & = &,y 5 : X — P2. Let yo, 11, y2 be coordinates
on P2, Then graph (&) C P* x P? is given by the equations

Yooi(2) + 11¢15(2) + Y2ep2(z) =0, j=0,...,3.

We may rewrite these equations as

zobjo(y) + -+ + zapju(y) =0, ;=0,...,3,

where ¥ = (Yj& )(K]_<3 has linear entries in Clyo,y1,y2]. The general fibre
0<k<4
of & is defined by four independent linear forms in C[zy,...,z4]. Hence ®

is birational with positive dimensional fibres precisely in the points where

1 drops rank:
0 — 40pe (—5) 5 50p(—4) = 9z = 0.

So & : X — P? expresses X as the blowing up of 10 points in P? and X is
embedded by the quartics through these points, i.e., by the 4 X 4-minors of
1. In other words

10
H=4L- ZEi
=1

(with obvious notations) and X is a Bordiga surface. 0O

The first general result deals with the existence of the adjunction map. It
is a consequence of [Sol], [VAV].
Theorem 3.2, Let (X,H) and K be as above. Then |K + (m — 1)H| is
base point free unless

(i) (X,0x(H)) = (P™,0pn(1)) or (P2, 0p(2)),

(i) (X,0x(H)) = (Q,0¢(1)), where @ C P™*! is a smooth hyper-

quadric,
(it1) (X,0x(H)) is a scroll over a smooth curve, O

If |K + (m — 1)H| is base point free, then we denote by
x = Py
rN\, s
Xl
the Stein factorization of the adjunction map ®. X’ is normal, r is connected

and s is finite.
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Theorem 3.3. [So2] Let (X,H) and K be as above and suppose that

|KK +(m —1)H| is base point free. Then there are the following possibilities:

(i) dim &(X)=0,and K = —(m—1)H,i.e., X is Fano of index (m—1),

(ii) dim ®(X) = 1, and the general fibre of r is a smooth quadric  such
that H induces Og(1),

(i) dim ®(X) = 2 < m and r exhibits X as a scroll over a smooth

surface,

(iv) dim@(X)=m . O

If dim ®(X) =m wewrite L' = r,(H) , K' = Kx: and H' = K'+(m—-1)L'.
The next result tells us, that in this case r contracts precisely the linear
P™~! c X with normal bundle Opm-1(—1) (necessarily disjoint).

Theorem 3.4. [Sol],[So2] Suppose that dim &(X) =m. Thenr: X — X'
is the blowing up of a finite number of points on the smooth projective

variety X', L' and H' are ample and
rH)Y=K+(m—-1)H. a

In the above situation (X', L) is called the first reduction of (X, H) [So5].

When is s an embedding ? The answer is given by

Theorem 3.5. [SV] Suppose that dim ®(X) = m. Then H' is very ample,
unless X is a surface and
7
(i) X =P*¥p1,...,p7) and H=6L— Y 2E; (the Geiser involution),
i=1

7
(i) X =PXp,...,ps) and H=6L— 3 2E; — Es,

=1

8

(ii) X =P%(p1,...,ps) and H =9L— Y 3E; (the Bertini involution),
=1

(iv) X = P(€), where € is an indecomposable rank 2 bundle over an

elliptic curve, and H = 3B, where B is a section with B> =1 on X
0

For surfaces the adjunction process, i.e., the study of |K +H|, |K'+ H'| etc.,
will finally lead to a minimal model. For 3-folds X C P3 the situation is
quite different. In this case it is often successful to study |K + H| instead of
|K +2H|. Compare section 5 for details and applications of further general
results of adjunction theory.
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4. SURFACES IN P*

In this section X will denote a smooth non-degenerate surface in P* and
d = H? its degree, 7 = H - (K + H) + 1 its sectional genus and y =
x(0x) =1— g+ p, its Euler characteristic.
K? may be computed from the double point formula (cf. [Ha2, Appendix
A, 4.1.3))

d>—10d—5H - K —2K*> +12x =0.
In order to classify surfaces of a given degree, one first has to work out
a finite list of admissible numerical invariants. One may apply Halphen’s
upper bound for 7 [GP] in connection with the lifting theorem of Roth [Rol,
p-152] and the following classification results:
Theorem 4.1. [Rol], [Au]. Let X be contained in a hyperquadricV? C P4,
Then # = 1 + [d(d —4)/4] and X 1is either the complete intersection of
V? with another hypersurface, or X is linked to a plane in the complete

intersection of V? with another hypersurface. O

Theorem 4.2. [Ko], [Au]. Let X be contained in an irreducible cubic
hypersurface V3 C P*. Then either X is projectively Cohen-Macaulay and
linked on V3 to an irreducible scheme of degree < 3, or X is linked on V3
to a Veronese surface, or to a quintic elliptic scroll. O

Corollary 4.3. If X is contained in a cubic hypersurface and if d > 9, then
X is of general type. O

To derive a lower bound for 7 and bounds for ¥ we may use Severi’s Theorem
[Se] together with Riemann-Roch, the Hodge index theorem, the Enriques-
Kodaira classification and adjunction theory. In the context of section 3 we
note:

Theorem 4.4. [Au], [La]. If X is a scroll, then X is a rational cubic or an
elliptic quintic scroll. O

Theorem 4.5. [BR], [ES]. If X is a conic bundle, then X is a Del Pezzo
surface of degree 4, or a Castelnuovo surface. O

Corollary 4.6. If d > 6, then the adjunction map ® is defined and (K +
H)? > 0,ie,dim ®X)=2. O

Once the numerical invariants are fixed, we use the information on the

dimensions h'Jx(m) provided by Riemann-Roch and [DES, 1.7]. In some
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cases more information on the dimensions and the structures of the Hartshorne-
Rao modules may be obtained by studying the relations between the multi-
secants to X, the plane curves on X and the syzygies of Jx (compare [PR]).
This information is helpful for construction and classification purposes. In
other cases one has to go through the adjunction process to analyze, how a
given X fits into the Enriques-Kodaira classification. In any case it is crucial
to know the number of exceptional lines on X. Le Barz’ 6-secant formula
[LB] tells us, that the number of 6-secants to X (if finite) plus the number
of exceptional lines equals a polynomial expression Ng = Ng(d, 7, x) (if X
does not contain a line with self-intersection > 0). This fits well with the
ideas of section 1. Once having constructed X explicitly , we can compute

the 6-secants easily. For examples we refer to [DES],[Po].

With the following example we would like to demonstrate, that the con-

struction via syzygies is not always as straightforward as in Example 1.6.

Example 4.9. [Po] Let us construct a family of smooth surfaces X C P*
with d = 11, 7 = 11 and x = 3. In view of [DES, 1.7] a plausible Beilinson
cohomology table for Jx(4) is

7

m

Suppose that a smooth surface X with these data exists. Then Beilinson’s

theorem yields a resolution of type
0-F=20-1)02%3) % 5-3dx(4) -0,

where § is the cohomology of a monad

d-21 d1—1,1

0-0%2) > 40Y(1) © 30-0.

Arguing as in example 1.6, we conversely choose § = Syz; (M), where M is
a module with Hilbert function (1, 4,3) and a minimal free presentation of
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type
0 M52 Ysne1s.

So M is the tensor product of the Koszul complex given by the linear form
a and the module M’ presented by 3. We may assume that o = z4 and that
M' is a module over R’ = Clzy,...,z3]. M’ has the same Hilbert function

as M, namely (1,4, 3). The general such M’ has syzygies of type

0+~ M« R'(2) .\ﬂ
1R 8R/(-1) aR/(=2)
N ® — & ,
(3+a)R(~2)  8R(~3) \ 3R/(<4) —0

with a = 0. It is easy to see, that in this case no morphism ¢ € Hom (¥, 9)
is injective. The trick for the construction of X is to choose § special in
order to obtain some extra syzygies and thus a larger space Hom (5, 3).
We will construct a module M’ with the above type of syzygies and a =
1. Equivalently, we will construct the C-dual module M’* by defining its
presentation matrix ¥ = (71,¥2). Choose four general lines L;,..., Ly in
the hyperplane V(z4), denote by e the presentation matrix in the direct
sum of the four Koszul complexes built on these lines and let § be a general
3 x 4-matrix with entries in C. Then € and thus also 4, = ¢ has four linear
1-syzygies. Let vz be given by 3 general quadrics. Then < presents an
artinian module as desired. With these choices the generic ¢ € Hom (F, §)
yields a smooth surface X cut out by 8 quintics and 4 sextics. In general it
is a plausible guess and in many cases true that the number of 6-secants to a
surface in P4 is precisely the number of sextic generators of its homogeneous
ideal. Indeed, in our case it is easy to see that L;,...,L4 are precisely
the 6-secants to X [Po, Proposition 3.32]. Le Barz’ 6-secant formula gives
Ng(11,11, 3) = 5. Hence there is one exceptional line on X. One can show
that there are no other exceptional curves [Po, Proposition 3.31]. Since

K? =1 by the double point formula X is of general type. O

In some cases it is quite subtle to construct artinian modules with the desired
graded Betti numbers. From this point of view the most difficult surfaces are
the abelian and bielliptic surfaces known so far [ADHPR2|. These are also
the surfaces with the most beautiful geometry behind (compare [ADHPR1]
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and Hulek’ s article on the Horrocks-Mumford bundle in this volume). The
link between the geometry and the syzygies is provided by the distribution
of the 2- and 3-torsion points on the Heisenberg invariant elliptic normal
curves in P%. In turn, these curves are related to the Horrocks-Mumford
bundle. Our knowledge on this bundle has influenced the construction of
further families of surfaces (compare [ADHPR1, Thm. 32|, [DES, 2.5], [Po,
4.1 and 7.4]).

5. 3-FOLDS IN P5

In this section X will denote a smooth, non-degenerate 3-fold in P%, S a
general hyperplane section, d = H? its degree and # = JH? - (K + 2H) + 1
its sectional genus.

We have two double point formulae, one for X,
K3 = —5d% + d(27 + 25) + 24(7 — 1) — 36x(0s) — 24x(0x),
and one for S, which may be rewritten as
H-K?= %d(d+ 1) — 9(x — 1) + 6x(0s)

(compare e.g. [Ok2]). So the basic invariants of X are d,=,x(Ox) and
x(0s). Equivalently one may consider the pluridegrees

di = (K + H)' - H*™ = c244(3x(5)), 1=0,...,3,
introduced in [BBS]. By Zak’s theorem [Za] X is linearly normal. Moreover
h'(X,0x) = 0 by Barth-Larsen-Lefschetz [BL]. In particular S is linearly
normal and regular. Clearly X is projectively Cohen-Macaulay iff S has

this property. So by studying S we obtain from Theorem 4.1 and Theorem
4.2:

Proposition 5.1. Let X be contained in a cubic hypersurface. Then X
is projectively Cohen-Macaulay. In particular X is of general type if d >
13. O

To work out a finite list of admissible invariants for a given degree one
may again start with Halphen’s upper bound for . Further tools are a
congruence obtained from Riemann-Roch [BSS2, 0.11], the inequalities de-
duced from the semipositivity of Nx/ps(—1) [BOSS1, Proposition 2.2] and
adjunction theory. In the context of section 3 we recall some classification
results. Xj,...,X3p will denote the 3-folds listed in table 7.3. The first
result follows from Theorem 4.4 and Theorem 4.5 (compare also [BOSS2]).
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Proposition 5.2.

(i) If X is a scroll over a smooth curve, then X = X, is a Segre cubic
scroll.
(ii) If X is a Fano 3-fold of index 2, then X = X, is a complete inter-
section of two quadric hypersurfaces.
(iii) If X is a quadric bundle over a smooth curve, then X = X; is a
Castelnuovo 3-fold. O

Theorem 5.3. [Ott]. If X is a scroll over a smooth surface, then X is one
of the following:
(i) a Segre scroll X = X;,
(ii) a Bordiga scroll X = X4,
(iii) a Palatini scroll X = X,

)
(iv) a scroll X = Xy, over a K3 surface. O

From now on we suppose that X is none of the exceptional 3-folds above.
Then the adjunction map ® is defined and the connected morphism r of its

Stein factorization contracts the linear P? C X with normal bundle Opz (—1)

to points.
Proposition 5.4. [BSS2| r is an isomorphism unless X = X7;. O

From now on we suppose that X # X7. Then X coincides with its first

reduction.
The next step in adjunction theory is to study K + H. This is big and nef
unless X is one of the special varieties listed in [So5]. In our case these are

classified:

Theorem 5.5. [BOSS2|. K + H is big and nef unless

(i) (X,H) is a Fano 3-fold of index 1. Then X = X; is a complete
intersection of type (2,3).
(ii) (X, H) is a Del Pezzo fibration over a smooth curve. Then X = X,

or X = Xo.
(iii) (X,H) is a conic bundle over a surface. Then X = X3 or X =
Xq. O

From now on we suppose that K + H is big and nef. Then S is of general
type and minimal. Therefore X is called to be of log-general type [BSS1].
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In this case further numerical information is provided by the generalized
Hodge index theorem [BBS, Lemma 1.1] and the parity relations [BBS,
Lemma 1.4].

From the Kawamata-Shokurov base point free theorem (see [KMM, §3]) we
know that for some m > 0 the linear system |m(K + H)| gives rise to a
morphism, say ¥ : X — X", For m large enough we can assume that ¥
has connected fibers and normal image. We write L = U, (H), K" = Kx»
and H'" = K" + L". Then L" and H” are ample and

U(H')=K+H

(cf. [BFS, (0.2.6)]). (X”,L") is called the second reduction of (X, H)
[So4],[BFS].

Proposition 5.6. [BSS3, Corollary 1.3] If d # 10 and d # 13, then X" is
smooth and U is an isomorphism outside a disjoint union € of smooth curves.
Let C be an irreducible component of C and let D := ¥~Y(C). Then the
restriction ¥p of ¥ to D is a Pl-bundle ¥p : D — C and NglF = Om(-1)
for any fiber F of Up. In fact, ¥ is simply the blowing up along €. O

Remark 5.7. i) If d = 10, then there is exactly one case where X" is not
smooth. Namely, for X = X4 the second reduction morphism ¥, which is
defined by |K + H|, contracts the quadric surface K to a singular point p.
Moreover, ¥(X) C P® is a complete intersection of type (2,2,3), while X is
the projection from p of ¥(X) (see also section 7).

ii) From [BSS3, (0.5.1) and (1.1)] and [Ed, (3.1.3)] it follows that in case
d = 13 the second reduction is singular iff there exist on X divisors D = P2,
with Nj = Op2(—2), which are contracted to points. We are not aware of

any such example. O

Example 5.8. Let X C PS5 be a smooth 3-fold with d = 11 and = = 14,
Then x(0s) = 8 and x(0Ox) =0 (compare [BSS2]). Every smooth surface
in P* with the same invariants as S is linked (4, 4) to a Castelnuovo surface
[Po, Prop. 3.70]. In particular S and hence X are projectively Cohen-
Macaulay with syzygies of type

0 — 20(=5) @ O(—6) 5 40(—4) = Jx — 0 .

Consequently X = X3 is linked (4,4) to a Castelnuovo 3-fold. Conversely
this shows the existence of 3-folds of type X5 [BSS2].
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What kind of 3-fold is X ?
From the invariants we compute the Kodaira dimension £(X) = 0. In order
to show that X is a blown up Calabi-Yau 3-fold we study |K + H|. By

dualizing ¢ we obtain the resolution
0 — wx(1) — O(1) ® 20 £ 40(=1) — O(=5) — 0 .

So |K + H| is base point free, dim |K + H| = 7, and we have a well-
defined map ¥|g4pq) : X — X", where X" is a 3-fold in P’. Moreover
h%(O0s(Ks — Hs)) = h*(0s(1)) = 1 by Riemann-Roch and Severi’s theo-
rem, thus S is minimal and there exists a rigid curve D € |Ks — Hg| with
Hg D = 4, ps(D) = 0. In particular, |Kg| = |D + Hg| defines an em-
bedding outside the support of D and maps the divisor D onto a line L
in P® = P(H%(Os(Ks))). It follows that ¥ = ¥ ) : X — X" C P7
coincides with the second reduction morphism. Moreover, by Proposition
5.6, X" is smooth, K is a smooth rational scroll P! x P? @ P53, which
is contracted by ¥ to the line L C X", while X is exactly the blow up
of X” along this line. Riemann-Roch gives x(Ox(2H + 2K)) = 32, hence
R%(Ix»(2)) = h%(Opr(2)) — h°(Ox(2H + 2K)) = 4. In other words, X" lies
on 4 linearly independent hyperquadrics. In fact, as one can check, X" C P*
is the complete intersection (3 2 2 2) of 4 hyperquadrics. Conversely, let L
be alinein P7 and Y(2,2,2,2) C P7 a smooth complete intersection of 4 hyper-
quadrics containing L. Then a general projection X = proj; X3 322 C P
is a 3-fold of type X;3. O

Remark 5.9. Similarly, [Po, Proposition 3.59] yields an easy proof for
the uniqueness of the examples of smooth 3-folds with d = 11 and = = 13
constructed in [BSS2]. The uniqueness for the other two families with d = 11
in [BSS2] is clear from [GP]. O

The construction via syzygies of all smooth 3-folds X C P® known so far is
straightforward. Nevertheless, it is sometimes quite subtle to determine the

structure of X. We will give examples of this kind in the next section.

6. EXAMPLES: TwWO FAMILIES OF
BIRATIONAL CALABI-YAU 3-FOLDS IN P5

In this section we will construct and study a family of smooth 3-folds X C P®
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with d = 17, 7 = 32, x(Ox) = 0 and x(O0s) = 24. We will also describe a
family of smooth 3-folds X’ C P° obtained via linkage X’ ~ X.

Let us first explain how to construct X via syzygies. In view of Riemann-
Roch the following is a plausible Beilinson cohomology table for Jx(5):

—
Suppose that a 3-fold X with these data exists. Then Beilinson’s theorem

yields an exact sequence
0 F=0(-1)a40*4) 5 §=20°3)®20 - gx(5) = 0.  (6.1)

Conversely, as one can check, the minors of a generic ¢ € Hom (¥, §) vanish

along a smooth 3-fold X as desired. By construction, dx has syzygies of
type

0 — dx — 20(—5) B 50(—6) — 8O(—T) — 20(—8) « 0 . (6.2)

What kind of 3-fold is X ? From the syzygies we see that X can be linked
(5,5) to a 3-fold Z of degree 8. It is not too hard to identify the scheme Z.

Starting conversely with Z we will reconstruct X and study its geometry.
Z can be described as follows: Let Y = P! x P2 @y PS5 be a Segre cubic
scroll and let Ly,. .., Ls be five general lines in P2, Then fori = 1,...,5 the
quadric @; =P x L; @ P is contained in Y and spans a linear subspace
II; C P® of dimension 3. Clearly, I, NY = @; (Y is cut out by quadrics)
and IT; NIT; = P! x {p;;}, where {pi;} = LiNL; for ¢ < j. Hence the scheme

Z:=YUH1U"'UH5
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is locally Cohen-Macaulay, and moreover a local complete intersection out-

k
side the lines L;j := P* x {p;;}. Write Zy =Y U |J II;, k= 0,...,5. Then
=1
Zy =Y and Z5 = Z. From the exact sequences

03z, ,(m=1) = 3z.(m) = 3z,_,cps ps (m — 1) = 0, (6.3)

where P* C P® is a general hyperplane through ITx, we deduce that h°Jz(3) =
0, h%Jz(4) = 1 and h%Jz(5) = 26, and that Jz(5) is globally generated.

Proposition 6.4. Let X be linked to Z in the complete intersection of two
general quintic hypersurfaces containing Z. Then X is smooth, it contains
the lines L;; and 3 x(5) has a resolution of type (6.1).

Proof. By a variant of Theorem 2.1 (compare [PS]) X is smooth outside
the lines L;j. By using the exact sequences (6.3) we see that the general
quintic hypersurface through Z contains the first infinitesimal neighborhood
of Li;, which is a multiplicity 5 structure on such a line. Higher infinitesimal
neighborhoods are not contained in the general quintic hypersurface through
Z. Moreover the tangent cone to Z at a point p € L;; is [, UI;UT, ¥, and
m;NT,Y =T, Q;. Now alocal computation shows that indeed X is smooth
along and contains the lines L;;. That dx(5) has a Beilinson cohomology

table as above follows via liaison from the exact sequences (6.3). O

Remark 6.5. (i) By dualizing (6.1) we find that wx(1) has a presentation

of type
0 wx(l) — O(1) ® 180 « 500(—1) « ---

Thus |K + H| is base point free and dim |K + H| = 24.
(ii) From the double point formulae we compute
H® . K=28 H-K’=18 and K3®=-52.
In particular (K + H) - K? = —34, hence (X) < 1. In fact, as we will see
later, X is a birational Calabi-Yau 3-fold. O
We use in the sequel the above liaison to describe the geometry of X:

Lemma 6.6. Each linear subspace II; intersects X along a smooth sextic
surface S;. A general element in the residual pencil |H — §;| is a smooth
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blown-up K3 surface of degree 11, sectional genus 12, which is embedded
in its corresponding P* by a linear system of type

10

|Hmin —2E1— Y_Ei|, with H2;, =24.

=2
Proof. It follows from the standard liaison exact sequences that X meets
II; along a divisor in the class 4Hny, — K, — @, hence along a sextic
surface S;, which is smooth for general choices in the liaison. For the second
statement in the lemma, we observe that a general element in |H — S;| is
linked (4,4) inside the hyperplane H to the configuration of planes P; U
U (H NII;) , where P; is the plane residual to ; in the intersection HNY.
’JI;f}:erefore the lemma follows from the following:
Proposition 6.7. [Po] Let T be a configuration T = PUP,UP;UP;UP; C
P*, where P is a plane, while P;, i = 1,...,4, is a plane meeting P along
a line, such that no three of the lines have common intersection points.
Then T can be linked in the complete intersection of two general quartic
hypersurfaces to a smooth, non-minimal K3 surface S C P* with d = 11
and m = 12, embedded by a linear system

10
Hs = Hpin —2E1 — Y Ei, Hi, =24.
i=2
Moreover, P meets S along the exceptional conic E; and an extra scheme
of length 6, while each intersection P;N S is a plane quintic curve. Residual
to it there is a base point free pencil of elliptic space curves of degree 6. O

Lemma 6.8. |H — §;| is a base point free pencil, t = 1,...,5.

Proof. Let H; denote a general hyperplane containing II;, and let K; be
the surface residual to S; in H; N X. Then S; N K; C II; N K;, and in fact
equality holds since deg S; N K; = 32 — n(S:) — n(K;) + 1 = 11. Thus if
Ci = SiN K;, then C? = 2p,(C;) — 2 — Kg, - C; = 0, where the intersection
numbers are computed on S;, and the lemma follows. O

As a corollary, we deduce that X is an elliptic 3-fold, namely
Corollary 6.9. Foralli # j, the linear system |H — S;|®|H — S;| induces

an elliptic fibration

P|H-sB|H-5;] : X — P! x P,
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with elliptic space curves of degree 6 as fibres.

Proof. Fix a general point in P! x P}, i.e., two general hyperplanes, H;
containing II; and H; containing II;, and denote as above by K; and K the
residual surfaces to S; and S; respectively. By Proposition 6.7, H; NII; N K;
and H; N II; N K; are plane quintic curves, hence K; N K; is an elliptic
space curve of degree 6, namely the residual to H; NII; N K; in H; N K;, or
equivalently the residual to H; NII; N K; in ;N K;. O

By liaison we deduce that X meets the Segre scroll Y along a surface T3 in
5
the class 4Hy — Ky — Y Q;, thus along a conic bundle of degree 10 and

i=1
sectional genus 6. Moreover, the standard liaison exact sequences yield on

X the linear equivalence

5
4H-K=T;+)_S. (6.10)
=1
We study in the sequel the structure of the map defined by the composition
of the cartesian product of the 5 pencils |[H — S;|, ¢+ = 1,...,5, with the

Segre embedding to P3!:

T=7T : X 5P x P! x P! x P x P* — P%!, (6.11)

5
|5H— Z:l Sil
Lemma 6.12. The canonical divisor K of X has two components T, and
T,. T, is a scroll of degree 18 and sectional genus 10, while Ty is the above

conic bundle of degree 10 and sectional genus 6.

Proof. Let, as in the proof of Lemma 6.8, K; be a general element in the
pencil |H — S;|. We recall that (H — S;)? = 0, thus K |x,= K + (H —
S:) |H-5,= Kn-s;. In other words, K meets a K3 surface K; along its
canonical divisor, namely, by Proposition 6.7, along 9 exceptional lines and
one exceptional conic in the plane residual to ¢; in HNY'. In conclusion, the
exceptional conics sweep the conic bundle T3, which is thus a component of
K, while the exceptional lines on the Ks are rulings of a scroll T; of degree
H?.K —10 = 18. Since wg, = 05,(2) and S;N S; = Lyj, (6.10) restricted
to S; yields Ty NS; = 2Hs, — Z Lij. On the other side from (6.10) again
we infer: i
(H = 5:) |s; +(2H =Y 5)) |s; +2H |s,= T2 |s; +H |5, +K |s; .
i#i
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Thus, since (H — S;) |s;= Hk;, it follows that K intersects S; along a
hyperplane section of X. We deduce that T must intersect S; along a curve
of degree 9 and genus 10, which in turn must be a section of this scroll since
it meets the exceptional lines of K; in one point. In other words, T; is a

scroll of degree 18 and genus 10. O

Lemma 6.13.

i) The linear system |K + H| defines a birational morphism ¥ =
Vik+n| : X — ¥(X) C P?*, which contracts the scroll Ty to a
curve of degree 27. Moreover, X is the blowing up of ¥(X) along
this curve,

ii) The morphism T = T 5 : X = T(X) C P3, induced by
ISH—‘_E1 Si|

|H + K + T|, contracts the conic bundle T, to a curve and is bira-

tional on its image.

Proof. Let K; be a general element of the pencil |H — S;|. Part i) fol-
lows easily since |K + H| induces on K; the adjunction morphism ®; =
q’lHK..+KK,.| : K; — ®,(K;) C P'?, which is birational and blows down only

the 9 exceptional lines K N K;. A similar argument works for part ii) since
|5H — Z Si| = |H + K + T3] restricts to K; as the map onto the second
ad_]omt surfaoe given by the adjunction process. O

We can show now that X is a non minimal Calabi-Yau 3-fold, namely:

Proposition 6.14. The morphism

s X =P xP'xP!xP!xP'— P3!
|5H—Els.'|

is birational on its image and contracts only the canonical divisor of X to a

curve. Moreover, the image T(X) is a smooth complete intersection of type

(1,1,1,1,1)? in >5< P!, hence a minimal Calabi-Yau 3-fold in P?°,
=1

Proof. The smoothness of T(X) follows from the fact that the iterated
adjunction morphisms for K; blow down only the (-1)-lines and (-1)-conics
onto the minimal model of K;. To see further that T(X) is a complete inter-

section of the type claimed we need to compute some intersection numbers.

By Lemma 6.8, (H — S;)? = 0, thus (H —S;)?-H =0 and (H - 5;)?-S; =0,
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which yields H - §? = =5, §?- §j = —4, for i # j, and S} = —16. Moreover
Si- S-Sk =0, fori#j #k,1+#k, since O;NI; NI C LijNLgNLj = 0,

5
and so we deduce that deg T(X) = (5H — }_ S;)* = 120. On the other
=1

side, deg x P! = 5! = 120 in P%, while T(X) spans only a P? since
i=1 .
ROx(H + K +T)) < B(Ox(H + 2K)) = x(Ox(H + 2K)) = 30. The

proposition follows. O

Proposition 6.15. Let V° and V® be general hypersurfaces of degrees 5
and 6 resp. containing X. Then X can be linked in the complete intersection
of V3 and V® to a smooth 3-fold X' C P°. X’ has invariants d' = 13,
7' =18, x(0x') =0, x(0s) = 10 and py(X') = °(dx(5)) — 1 = 1. Hence
(H')? - K' =8, H - (K')? = =2 and (K')® = —4 by the double point
formulae.

Proof. Smoothness follows from a Bertini argument since, on V3, X is
cut out by sextic hypersurfaces (compare 2.1 and [PS]). The numerical in-

formation follows from the standard liaison exact sequences. O

Corollary 6.16. X' is the degeneracy locus of a morphism

0— 0(-1)®20%(2) = 42 (1) ®20 = Ix:(5) = 0 .
Hence 3 x+ has syzygies of type
0 = Jx/(5) — 20@190(~1)  500(—2) — 480(—3) — 220(—4) — 40(~5) — 0.
Proof. This follows from (6.1) via liaison or by applying Beilinson’s the-
orem. O

What type of 3-fold is X'?

Proposition 6.17. K’ is a smooth scroll of degree 8, sectional genus 3 over
a plane quartic curve. Moreover, the Segre scroll Y = P! x P? meets X’
along the scroll K' and a curve of degree 9, arithmetic genus 4 on the scroll
Ts.

Proof. From general liaison arguments it follows that Z intersects X’

along the canonical divisor of X’ plus may be something of bigger codimen-
sion. On the other side, VENII; = §; since II; N X = S; for all . We deduce
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that the 2-dimensional part of the scheme theoretical intersection ¥ N X'
is exactly K'. Now Pic (Y) is generated by the classes P = [{point} x P?|
and @ = [P' x P!], and P* =0, @* =0, @* - P = 1. Then the scroll T; is

5

of class 4Hy — Ky — 5 @; = 6P +2Q. But K’ is residual to T in Y N V6,
i=1

Moreover, T is cut out on Y outside the II;’s by the sextic hypersurfaces

through X. It follows that K’ is smooth for a general choice of the liaison,
and that K’ is of class 6Hy — T, = 4Q. In particular, K’ is a scroll over
a plane quartic curve and has the claimed invariants. Outside K’, X’ can
meet the scroll Y only inside 7o C Y N X. The proposition follows now
since X'NT, = (5Hx — Kx) - T: is a curve of degree 41, arithmetic genus
80, with a component of degree 32 on the scroll K. O

Proposition 6.18.
i) |H' + K'| is base point free and big.
ii) ¥ = ¥\ gyk) : X' — P is birational on its image M = ¥'(X'),
which is a smooth Calabi-Yau 3-fold, with deg M =27, 7(M) = 28
and c3(M) = —64.
iii) ¥’ contracts the scroll K’ to a curve of degree 6 and genus 3, and is
an isomorphism outside this scroll. Moreover, X' is the blow up of

M along this curve.

Proof. i) From the syzygies we see that wx’ is a quotient of O @ 40(-1),
thus |H' + K'| is base point free and big since (H' + K')® = 27. Moreover
dim |[H'+ K'|=9

ii) From the liaison exact sequence
0 — dysnye(6) = Ix(6) = wx:(1) =0

we deduce that the map ¥’ : X’ — P? is in fact the composition of the
restriction to X’ of the rational morphism Z : P° --+ P¢ = P(H%(Jx(6))
given by the sextic hypersurfaces through X, with a projection from P6 --»
P?® along P® = P(H%Jysqye(6)). Thusin order to show that ¥’ is birational
on its image it is enough to check that = is birational on its image and that
the projection P'® --» P?® is generic. But one checks easily that 5 general
sextic hypersurfaces through X meet in exactly one point outside X. In
particular, it follows that ¥’ : X’ — M coincides with the second reduction
map of X',
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iii) Since (H' + K') - K' = 0, ¥’ contracts the scroll K'. Its image is
isomorphic to the plane quartic curve, which is the base of the scroll K'.
From Remark 5.7 it follows that M is smooth and ¥’ is an isomorphism
outside the scroll K’, unless there are divisors D = P? C X' with Ngl =
Op2(—2), which are contracted to singular points on M. Assume that such
a divisor D exists. Then a general hyperplane section S’ of X’ contains a
(—2)-line L. But on §’, R%(0s/(Ks — Hs')) = h¥(0x/) = 1, s0 if Dg €
|Kg» —Hg|, then Kg-L = 0= 1+ Dg/- L, and thus L must be a component
of Dg:. On the other side Dg is an irreducible hyperplane section of the

smooth scroll Kx+, and therefore contains no such line as a component. O
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7. OVERVIEW

In this section we collect some information on the families of smooth non

general type surfaces in P* and 3-folds in P® known to us.

Table 7.1. Known families of smooth non general type surfaces in P4

Enriques-Kodaira Classification
degree | rational | ruled | Enriques K3 abelian bielliptic |elliptic
irrat.
d<4 6 1
d=35 1 1
[Ca] | [Seg]
d=6 1 1
[To1],[Ok1]{ [Bo).[Ve]
[Wh]
d=171 1 1 1
[Io1].[Ok3]{[To1].[Ok3] [Rol] [Ba)
d=28 2 1 1
[102].[Ok4][Ok4].[All] [Ok4] [Ba]
d=9 2 1 1 1
[AR] |[Al1].[Al2] [Cos).[CV] [Rol] [AR]
d=10 3 1 2 1 1 2
[Ra],[PR] |[DES].[Ra] [DES].[Br] | [Ra).[Po] | [Co].[HM] [Ser] [Ra)
(HL).[Ram] [ADHPRI]
d=11 342 1 5 1
[Po] |[DES].{Po] [DES] [DES].[Po] [Po]
d=12 1 3
[DES] [Po]
d=13 2 1
[DES].[Po] [Po]
d=14 1
[Po]
d=15 2 1
{HM].[Po] |[ADHPRI]

Remark 7.2. (i) The classification of smooth surfaces in P4 is complete
up to degree 10, and there is a partial classification in degree 11. In the
first column of Table 7.1 we refer to the papers, where one can find the clas-
sification results. In the other columns we indicate the number of families
known and the corresponding references. The classification up to degree
5 is classical. More information can be found in [DES, Appendix B, [Po,
Appendix] and [ADHPR2].

(ii) Two families of rational surfaces of degree 11 are due to Schreyer (un-
published).

(iii) One of the families of K3 surfaces of degree 11 has been first constructed
by Ranestad (compare [Po, Proposition 3.41]). O
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Table 7.3. Known families of smooth, non-degenerate, non general type 3-folds in P53

X! d Ed pe k(OxIx(Os)| x(X) liaison type classification] ref.
X;lalol o] 1 ]-cf ;W2 Segre embedd. of P! x P2 rational
scroll
X2| 4 1 0 1 1 | —oo | X2 =Z32) Fano 3-fold of index 2 rational K1)
Castelnuovo 3-fold;
Xs| 5 2 0 1 1 | —co| Xs%Pp2 quadric fibration over P! rational [[Io1],{Ok2)
via |K + 2H|
Bordiga 3-fold;
X |6 | 3]0 |1]1 |- X%%, | X,=P€),Erk2vbonP? | rational [[Io1),jOk2]
¢1 =4, 2 = 10, via |K + 2H| scroll
unirational
Xs| 6 4 0 1 2 | -0 | X5 =23 Fano 3-fold of index 1 not [Io1),[Ok2
rational |[En],[Fal]
Xe| 7 4 0 1 1 —0o Xe proj. Xe =P(E), €tk 2vbon rational |[[Io1],[Ok3}
Buchsbaum P%(xy,...x¢); via JK + 2H| scroll [Pa)
9 X: = 2(2_2_2.)(:;:0), the blov:ing blown up
X 7 S 0 1 2 —oo | X7~ 2(13) up of a c.i. 2(2_2_2) Cc P Fano of |[Io1),[Ok3}
via |K + 2H| index 1
Del Pezzo fibration over P*,
Xsl| 7 6 0 1 3 —00 Xs (?&‘)Pa with gen. fibre P?(z1,...z6); rational [Iol],[OkS*
via |K + H|
Del Pezzo fibration over P*;
X8l 7] 01| 3 |[-cof xs%0 gen. fibre c.i. (2,2) in P4 | rational | [lo2]
via |K + H|
X10f 8 9 1 0 6 ] Xi0 = 2(2_4) minimal Calabi-Yau 3-fold
P! bundle over a minimal scroll,
Xu| 9 8 [i] 2 2 —0o | X11 proj. K3 surface S C P8; not [Ch3]
Buchsbaum via |K + H| rational
conic bundle over
X2l 9 | 9 o | 1] 4 [-oof x:2%%, P2, via |K + H| rational | [BSS1)
Xia| 9 |10 1 [ o] 6|0 |Xiw=Say minimal Calabi-Yau 3-fold
minimal K3 fibration over
Xl 9 |12 2 | 1] 9 | 1 | xu®P2 | P via |K|; 4K +3H > 0. (BSS1)
log-gen type
log-general type;
Xl 1011 0 | 1| 5 | -eo| X1sPX, | |K + HJis birational onto P> | rational | [BSS1]
Xig = pl‘ojpz(zlgla), with birational
Xel10 12| 1 10| 7 [0 |Xe®%1,| S0220) CP8ci. singular at p; | Calabi-Yau;| [BSS1]
via the inverse of |JK + H| H2K =2
blown up Fano 3-fold; unirational
X2l 11|13 0o | 1| 6 | -0 X12%Xy; | |K + H] is birational onto a not [Ch3]
hypercubic in P*; rational | [BSS2)
X1s = proj; X2 2,2,2), with | birational
X 11 | 14] 1 [ 0| 8 | 0 | X1sPXs | L C S22 CP7smoothc.i. | Calabi-Yau;| [BSS2]
and L a line; via |K + H| H2K =4
minimal K3 fibration over
Xl 10 |15 ] 2 | -1 10 | 1 | XigRYP? | P via |K; fibres are (2,3) (BSS2)
o ci. in P4
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X d 7 | pg k(Oxk(Os]<¢X liaison type classification] ref
conic bundle over a not
X20{ 12 15| 0 2 6 | —oco Xzo(w)ng K3 quartic surface S C P3, rational |[BOSS2]
via |K + H|
|K + H| defines a birational
Xl 12 )15) 0 1 7 | =0 X! map onto a Bordiga X4 CP® | rational [Ed]
X15 U X,
|K 4+ H| defines a birational | birational
X2l 12 |16 1 0 9 0 X220 X 07 morphism onto P(R2) N BlgaP8;| Calabi-Yau;| [Ch3]
see [Ch3] for details H2K =6
|K| defines a K3 fibration
Xl 12 {17 2 [ -1 |11 ] 1 | X2a%x, over P; the fibres are minimal | [Ed]
S(222) in P
|K’| defines an elliptic fibration
Xou| 12 [18] 3 -2 13] 2 Xaa (a~'6)X4 (in plane cubics) over P2 minimal [Ed]
elliptic
log-gen type
Xos| 13 ]18| 0 | 1| 90 | ~oo| Xos®Xa0 [BOSS2)
|K + H| defines a birational | blown up
X2g| 13 |18} 1 0 10 0 X 26(5&4‘)}{ 29 | map onto a Calabi-Yau 3-fold | Calabi-Yau
Y C P? with c3(V) = —64
|K + H| defines a birational | unirational [Is]
X271 13 |19) O 1 11 | —oo0 Xg-,“’V'S)Xe map onto G(1, 5) N P%; not rational| [Ch3]
birat. to cubic 3-fold in P* [Fa2]
|K + H| defines a birational | birational
Xoo| 24 |22 1 | 0 |14} 0 | Xou'®'x1s map onto G(1,6) NP3 | Calabi-Yau| [Ch3)
K = K; + KRz, H°K; =10; | birational
Xao| 17 [32] 1 J 0o j2¢a]| 0 X20'%"  ||H + K + K| birat. onto a c.i.| Calabi-Yau
X, U'EJI P* | (1,1,1,1,1)%in .35(1 P! C P3| (elliptic)
log-general type not
X3 18 |35]| O 2 26 | —00 rational

Remark 7.4. (i) The classification of smooth 3-folds in P® is complete up

to degree 11 and almost complete in degree 12.
(i1) Some of the information in Table 7.3 is new. It can be obtained along
the lines of section 5 (compare Example 5.8).
(iii) In order to construct X»; via a liaison Xgl'if)Xls U X, one has to

choose X;5 and X in a special position. O
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Exceptional bundles and moduli spaces of
stable sheaves on r,

J.-M. Drézet

1 Introduction

In this paper I try to show how the exceptional bundles can be useful to study
vector bundles on projective spaces. The exceptional bundles appeared in
[5], and they were used to describe the ranks and Chern classes of semi-stable
sheaves. In [1] the generalized Beilinson spectral sequence, built with excep-
tional bundles, was defined, and it was used in [2] and (3] to describe some
moduli spaces of semi-stable sheaves on IP,. The general notion of excep-
tional bundle and helix, on IP, and many other varieties, is due mainly to
A.L. Gorodentsev and A.N. Rudakov (cf. [7] , [14]). A.N. Rudakov described
completely in [12] the exceptional bundles on IPix IP; , and used them in [13]
to describe the ranks and Chern classes of semi-stable sheaves on this variety.
The exceptional vector bundles on IP3 have been studied (cf [4], [10], [11])
but they have not yet been used to describe semi-stable sheaves on IP;. On
higher IP, almost nothing is known.

In the second part of this paper, new invariants of coherent sheaves of
non-zero rank are defined. In some cases they are more convenient than the
Chern classes.

In the third part the exceptional bundles and helices are defined, and
their basic properties are given.

In the fourth part, I define some useful hypersurfaces in the space of in-
variants of coherent sheaves on IP,,. On IP,, this space is IR?, with coordinates
(4, A), where p is the slope and A the discriminant of coherent sheaves, as
defined in [5]). On IP,, the space of invariants is IR™, and the coordinates are
the invariants defined in the second part.
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In the fifth part, the description of ranks and Chern classes of semi-stable
sheaves on IP; is recalled. The ranks and Chern classes of semi-stable sheaves
on IP; are not known, and in this case I can only try to formulate the problem
correctly, using the notions of the fourth part.

In the sixth part, some partial results are given on the description of
the simplest moduli spaces of semi-stable sheaves on IP,,. A moduli space
is simple when the corresponding point in the space of invariants belongs
to many hypersurfaces defined in part 4 (in this case a suitable generalized
Beilinson spectral sequence applied to the sheaves of this moduli space is
supposed to degenerate). In the case of IP,, n > 3, many questions remain
open.

2 Logarithmic invariants

Let X be a projective smooth algebraic variety of dimension n, E a vector
bundle (or coherent sheaf) on X, of rank r > 0. The logarithmic invariants
A;(E) € A(E) ® Q of E are defined formally by the following formula :

n

log(ch(E)) = log(r Z 1) A(E),

where ch(E) is the Chern character of E. For example, we have

e 1 r—1
AE) = BalB) = (e = 5=,
1,c3 1 1 31 1 !
R 1 I R
3(E) = (2+0102( 2)+cl(3r2 2r+6))’
VLN TS IO § SR
AB) = HG+P (- +aaiz—3)
111 1 1 7 1
(= ——-+2)+d(=-=+——-=—
+clc2(r2 r+6)+cl(41‘3 2r2+24r 24)’

where for 1 < ¢ < n, ¢; is the i-th Chern class of E. The first invariant is the
slope and the second the discriminant of E.
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Proposition 2.1 Let L be a line bundle, E,F vector bundles on X. Then

1 AL =c(L) and A(L)=0 i i>1.

2. Mi(E®@F)=Ai(E)+Ai(F) if 1<i<n. Thus A((E®L) = Ay(E)
if 2<e<n.

3. Ay(E*) = (—1)}A{(E) if 1<i<n.

This is clear from the definition of the A;’s.

Since ch(E)/r is a polynomial in A;(E),...,A,(FE), the Riemann-Roch
theorem on X can be written in the following way :

where P is a polynomial with rational coefficients that depends only on X.
If X is a surface with fundamental class K, we have

Ay (A — K)

P(A,Ap) = 2

+ X(OX) — AQ.

If X is a threefold with fundamental class K, and if ¢; is the second Chern
class of the tangent bundle of X, we have

1

1 1
: A?*Z K AP35 (K +e) A1 +x(Ox).

1
P(A1,Ay,A3) = Aa—A1A2+§I{A2+

In particular, for X =IPs,

P(Ay,A3,A3) = Az — AjAr —2A5 + (A13+3) .
For X =Py,
1 . 5
P(Ay,A5,A3,Ay) = —-Aj+A1Az+ §A2(A2 - A+ '2‘(A3 — A1Ay)

A +4
H(A),
In the case of IP,, let T’ be the hyperplane of elements of rank 0 in the
Grothendieck group K (IP,). Then we have a surjective map
(A1,..,An) @ K(PO)\I' — &.

Two elements of K(IP,)\I' are in the same fibre of this map if and only if
they are collinear.
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3 Exceptional bundles

3.1 Definition of exceptional bundles

Let E be an algebraic vector bundle on a smooth projective irreducible al-
gebraic variety X. Then E is called ezceptional if H(X,Ad(E)) = 0 for
every i. If X is one of the varieties considered here (a projective space or a
smooth quadric surface) then E is exceptional if and only if E is simple (i.e.
the only endomorphisms of E are the homotheties) and Ezt'(E,E) =0 for
every i > 1.

For example, on IP, the line bundles are exceptional. So is the tangent
bundle. In general, if F is an exceptional bundle and L a line on X, then
E ® L is also exceptional.

3.2 Helices

Suppose that X =1IP,, with n > 2. An infinite sequence (FE;);ez of ex-
ceptional bundles is called ezceptional if the following three conditions are
satisfied :

1. The sequence is periodical, i.e. for all i € ZZ we have
E,'+n+1 o~ E,(n + 1).

2. There exists an integer ip such that for ¢ < ¢ < j <ip+n we have

Ezt*(E;,E;) =0 if k> 0,
Ezt*(E;,E;) =0 for all k.

3. For every integer j, the canonical morphism

ev; @ Ej_] ® Hom(Ej_l,Ej) — Ej
(resp. ev; : E;_y — E; ® Hom(E;_,, E;)* )

is surjective (resp. injective).

If 0= (E)icz Iis a sequence of exceptional bundles, let 7(o) denote the
sequence (Ef);ez, where E! = E;_; for each i. Suppose that o satisfies
condition 1. Then any subsequence (E, ..., E;1n) is called a foundation or
a basis of 0. Suppose that o is exceptional. Then it is not difficult to see
that condition 2 above is verified for every integer 4o, and that Ker(ev;) and
Coker(ev]) are exceptional bundles. We can thus define two new sequences
of exceptional bundles, associated to o and j mod (n+1). The first sequence

Li(0) = (E)iez
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is defined by :

E; = E;if i#j—1(modn+1) end i #j (modn+1),
i~ 1k(n+1) Ker(ev;)(k(n +1)),
E]I'+k(n+1) = Ej-1+k(n+1),

for all k. The second sequence R;_1(0) is defined in the same way, by repla-
cing in o each pa.ir (Ej—1+k(n+1),Ej+k(n+1)) by

(Ejbnr), Coker(ev])(k(n +1)).

The sequence L;(o) is called the left mutation of o at E; and R;_1(0o) the
right mutation of o at E;_;. For these two sequences, conditions 1 and 2
above are satisfied.

Suppose that condition 3 is also satisfied for Lj(o), i.e. that it is an
exceptional sequence. Then it has a foundation of type

(Ej—lij+1v- .. ij+n—1)F1)v
where F) is an exceptional bundle. It is possible to define
L?(O’) = Lj_l [+) Lj(a).

Suppose that this is again an exceptional sequence. Then it has a foundation
of type
(Ej-1,Ej,...,Ejtn-2,F2,Ejn_1),

where Fy is an exceptional bundle. It is then possible to define
L¥(0) = Lj_z0 Li(0).

If this process can be continued, we can define the exceptional sequence
Lf(a), for 1 < k < n, which has, if £ < n — 1, a foundation of type

(Ej—lij+1v .. ‘ij+n—k) Fkij+n—k+1v- e ij+n—1)v

where Fj, is an exceptional bundle. In particular, L"~!(o) has a foundation
of type
(Ej-1,Ej41, Fa1, Ejy2,. ., Ejin-1),

so L} (o) has a foundation of type
(Ej—l)anEj+1v L) ij+n—1)-

The exceptional bundle Fi(—n), for 1 < k < n, is denoted by L® E;,
and L(D)Ej = Ej.
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A heliz is an exceptional sequence o such that for every integer j, the
sequences L;-c (o) are defined, for 1 < k < n, and such that

L¥(o) = 7(0).

The last condition means that F, ~ E;.

The helices have an interesting property: any left or right mutation of
a helix is a helix. So it is possible to define infinitely many helices and
exceptional bundles simply by making successive mutations of one helix. The
simplest helix is the sequence (O(¢));ez. The helices that can be obtained
by successive mutations of this helix are called constructive helices and the
corresponding exceptional bundles are the constructive exceptional bundles.
All helices and vector bundles on IP, are constructive (see [1, 5, 7]), and so
are all helices on IP3 (see [11]).

All the mutation transformations defined above can be expressed in terms
of 7 and L only. For example, we have L; = 7' 0 Ly o 779. There are some
relations among 7 and Ly :

Ly =r,
LootoLgor 'oLgor=1o0Lgor ' oLyoTo Ly,
L()OTn =TnOL(),

LooroLpor =roLgor oLy if 2<i<n—1.

3.3 Generalized Beilinson spectral sequence
Let (Ey,..., E,) be a foundation of a constructive helix. Then the sequence
(L™ME, L VYE,_,,...,LYVE,, Ep)
is a foundation of the helix L, o L,_;o...0 Li(o). There exists a canonical
resolution of the diagonal A of P,x P, :
0— L™WE,RE;, — L*-VE, \RE:_, — ...

— ...LOERE — E,RE} i» Oa — 0,

where ¢ is the trace morphism. It follows easily that for every coherent sheaf
€ on PP, there exists a spectral sequence EF'? of coherent sheaves on IP,,
converging to £ in degree 0 and to zero in other degrees, such that the only
possibly non-zero E}*? terms are

EP* = EX,@ H(E®LUPE.,),

for —m < p<0,0<q<n. The morphisms d§’?! come from the mor-
phisms in the preceding resolution of Q. This spectral sequence is called
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the generalized Beilinson spectral sequence associated to £ and the founda-
tion (Eo, ..., E,). If this foundation is (O(2))o<i<n, the generalized Beilinson
spectral sequence if of course the ordinary Beilinson spectral sequence.

From the generalized Beilinson spectral sequence one can deduce the
generalized Beilinson complez

0—X  p—Xpn—. —mXg3—X— X5 —...— X, —0

where for —n <k <n
Xy = & Ef'q.
pte=k

This complex is exact in non-zero degrees and its cohomology in degree 0 is
isomorphic to £.

4 The geometry associated to exceptional
bundles

4.1 The space of invariants and its canonical hypersur-
face

Consider the space IR™, with coordinates (A;,...,A,;). Then to each cohe-
rent sheaf £ on IP, with non-zero rank one associates the point

(A1(€), .., Bn(E))

of IR™, which will be also denoted by £. Recall that there exists a polynomial
P in n variables with rational coefficients, such that for every coherent sheaf
£ on IP, with non-zero rank we have

x(€) = rk(€).P(AL(E),...,An(E)).
The hypersurface H of IR™ defined by the equation
P(0,2A32,0,2A4,...)=0

is called the canonical hypersurface. If £ is a stable sheaf on IP,, then £
belongs to the halfspace

P(0,2A2,0,2A4, ) <0

if and only if the expected dimension of the moduli space of semi-stable
sheaves that contains £ is strictly positive.
For example, on IP,, the equation of H is

1
A2=§.
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On IB; it is
Ay =

3

=)

and on IP, 35

Ag=A2— 702
Question 1 Is the expected dimension of a moduli space of semi-stable
sheaves on P, always nonnegative ¢

4.2 Hypersurfaces associated to exceptional bundles
and limit hypersurfaces

Let E be an exceptional bundle on IP,. Then to E one associates the hyper-
surface S(E) of IR™ defined by the equation

P(AV(E)= Ay,...,An(E)— A,) = 0.

It contains the points corresponding to sheaves £ such that

n
X(€,E) = Y (-1)dim(Ezt(E,E)) = 0.
i=0
To define the limit hypersurfaces we need to consider an ezceptional pair,

i.e. a pair (Ep, Ey) of exceptional bundles that can be inserted as a pair of
consecutive elements in some helix. Then it follows from the definition of a
helix that there exists a sequence (F;)iez of exceptional bundles such that
Fy = E, , F, = Ey, and for every integer i we have an exact sequence

0 — Fi.y — F,®@ Hom(F;, Fiy,) — Fipn — 0.

Then the hypersurfaces S(F;) have a limit when ¢ tends to +oo0 or —oco. It
is possible to define more complicated limit hypersurfaces (limits of limits,
and so on). Let C(E) denote the intersection of S(E) and the canonical
hypersurface H.

In the case of IP,, the curve S(E) is a parabola in IR?, of equation

1

B = H(A(E) = M)+ 5(A(E) — Ay 45 + k()

and C(FE) consists of two points on the line H. The limit points on H coincide
with the non-limit points.
In the case of IPs, the equation of the surface S(E) is

1 5
Bs = =g+ (Mot 35 -

1
B W)Z + A3(E),
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with z = A} — A (E)—2. The curve C(E) is obtained by taking A, =1/4
in the preceding equation. In this case, the limit curves are distinct from
the non-limit ones. Some other surfaces and curves may be interesting in the
case of IP;: the images of the preceding ones by the translations

(AlvA2vA3) — (AlvA2vA3 + k)v

where k is an integer. In [11], Nogin proved that the semi-orthogonal bases
of K(IP;) are the sequences

([Eo] ® o*,[E1] @ a*, [Ey] @ o*, [Es] © o),

(Eo, E1, Eq, E3) beeing a foundation of a helix, « the class of the ideal sheaf
of a point and k an integer. The multiplication by of corresponds to the
preceding translation in IR3.

4.3 The case of PxIP;

The space of invariants is here IR® with coordinates (a,b,A3), a,b beeing
the two coordinates of A;. The equation of H is

1
AQ = 5
The surfaces S(E) are quadrics, and the corresponding conics C(E) have

been used in [12]. It is also possible here to define the notion of limit surface
(or curve). This case is similar to the case of P (cf. [4]).

5 Existence theorems

5.1 The existence theorem on P,

Let £ be a stable coherent sheaf on IPs, not exceptional, and F an exceptional
bundle such that rk(E) < rk(£) and | Aj(E)— Ay(€) |< 1. Then we have

x(E,€) <0 if A(€) < A(E),
and
x(E,E)<0 if A(E) > A(E) .

The first condition means that the point £ in IR? is over the curve S(E*(—3))!
and the second that it is over the curve S(E). Conversely the following is
proved in [5]:

this means that A,(E) is greater than or equal to the A, coordinate of the point of
S(E*(-3)) whose first coordinate is A;(E).
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Theorem 5.1 Let ¢ = (A;,Ay) be a point in Q2. Suppose that for every
ezceptional bundle E such that

|A(E) - A |£1
the point q is over S(E*(-3)) if A(€) £ Ai(E), and over S(E) if
A (E) > A(E). Then for every triple (r,c1,c2) of integers, with r > 0

such that Ay(r,c1,c2) = A; for i=1,2, there exists a stable vector bundle of
rank r and Chern classes ¢, ¢s.

The coordinates of the point P (resp. Q) above are (A;(E) — zg,1/2)
(resp. (A1(E) + 2E,1/2)), where zg is the smallest root of the equation

; 1
P43+ ——5 =0.
v 3rg(E)?
Let Ig =]A(E)—zg,A(E)+zg[, and £zc be the set of isomorphism classes
of exceptional bundles on IP,. Let M(r,c1,c2) denote the moduli space of
semi-stable coherent sheaves on IP5, of rank r and Chern classes ¢;,cz2. The
preceding theorem can be improved and one obtains easily the final form of
the existence theorem on IP; :
Theorem 5.2 1. The family of intervals (Ig)Eecsc is a partition of Q.
2. There ezists a unique mapping
6:Q—Q
such that for all integers r,c1,c2 with r > 1 one has
dzm(]\l(r, C],Cz)) >0<= Ay > 5(A1),
(with Ay = 2 and Ay = Ley— 2=t 3 .)

r 2r €1
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3. If E in an exceptional bundle on 1Py, & in given on |A(E)—zg, Ay(E))
by S(E*(—3)) and on [A((E), A(E) + zg[ by S(E).

5.2 The existence theorem on Pix P,

A.N. Rudakov has proved in [13] a result analogous to theorem 5.1, using the
exceptional bundles on IPx IP; , but it seems more difficult than in the case
of IP; to obtain the analogous result to theorem 5.2.

Question 2 [t is easy to deduce from Rudakov’s result that there exists a
surface S in IR3, defined by an equation

Az = f(A1),

such that for all integers r,a,b,co with r > 1, there ezxists a stable non-
exceptional coherent sheaf on Px 1Py of rank r and Chern classes (a,b), c;
if and only if the associated point in IR® (whose coordinates are the corres-
ponding Ay, Asz) is over? S . It would be interesting to give a description of
S. It should be made of pieces of the surfaces S(E) or perhaps of the limit
surfaces defined in section 4.3 .

5.3 The existence theorem on P,, n > 3

In this case, almost nothing is known, except for rank-2 stable reflexive
sheaves on IP3 (cf. [8]).

Question 3 Is there a surface S in IR3, of equation
Az = f(A1,A3),

such that for all integersr, cy1, ¢z, c3 withr > 1, the moduli space M(r,c1, ¢, c3)
of semi-stable sheaves on IP3 of rank r and Chern classes ¢, c3,¢3 has a po-
sitive dimension if and only if the associated point of IR3 (whose coordinates
are the corresponding Ay, Az, Ag) is over® S ?

In particular, do the gaps in c3 found in [8] can be filled if one allows
non-reflezive rank-2 stable sheaves ¢

If it exists, is S made of pieces of the S(E) and the limit surfaces ?

2this means that A, > f(A;).
3this means that A, > f(A1, Az).
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6 Descriptions of moduli spaces of semi-
-stable sheaves using exceptional bundles

6.1 The case of P

Let E be an exceptional bundle on IP;, and A; a rational number such that
A (E)—zg < A1 € A(E). There exists exceptional bundles F,G such that
(E, F,G) is a foundation of a helix. Then to study moduli spaces of semi-
stable sheaves M(r,c;,¢3) such that ¢;/r = A; it is convenient to use the
Beilinson spectral sequence associated to (G*(3), F*(3), E*(3)). We obtain
a good description of M(r,c1,¢3) if Ay = 8(A,), i.e. if the point of IR?
corresponding to M(r,c;,cz) lies on the curve S(E*(—3)) (or more generally
in some cases where M (r, ¢1, c;) is extremal, i.e if dim(M(r,c1,¢2)) >0 and
dim(M(r,c1,c0— 1)) < 0).

Suppose that Aj = §(A1). Let H be the exceptional bundle cokernel of
the canonical map

F — G® Hom(F,G)"*,

and
m=—-x(EQH"), k=—-x(E®G"),

where £ is a coherent sheaf of rank r and Chern classes ¢;,cz. Then m >0
and k > 0. If £ is semi-stable then the only two non zero E}*? terms in the
Beilinson spectral sequence associated to (G*,F*,E*) and £ are
F(-3)® H°(€ ® H*(3)) and G(-3) ® H°(€ ® G*(3)). So the spectral
sequence degenerates and we have an exact sequence
0 — F(-3)®Cc™ — G(-3)®ct — € —0.
Consider now the vector space
Hom(F®c™,G®c*) = L(Hom(F,G)* ® c™,c*),

with the obvious action of the reductive group

Go = (GL(m) x GL(k))/c*.

This action can be linearized in an obvious way, so we have the notion of
semi-stable (or stable) point of IP(W). A non-zero element of W will be
called semi-stable (resp. stable) if its image in IP(W) is. Let ¢ = dim(W)
and

N(g,m, k) = P(W)*/G, .

which is a projective variety. The following result is proved in [2] :

Theorem 6.1 1. Let a be a non-zero element of W, f the corresponding
morphism of vector bundles. Then f is injective as a morphism of
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sheaves, and coker(f) is semi-stable (resp. stable) if and only if « is
semi-stable ( resp. stable).

2. The map f v coker(f) defines an isomorphism
N(q, m,k) jad M(T, C, 62).

There is a similar result for some other extremal moduli spaces of semi-
stable sheaves (cf. [3]). In this case we have to consider morphisms of the
following type

(E(-3)®c") & (F(-3)®Cc™) — G(-3) ® ct,

and the group acting on the space of such morphisms is non reductive.
There is a canonical isomorphism

N(g,m,k) ~ N(q,k,qk —m).

Hence to N(q,k,qk — m) is associated another moduli space M(r’,c},c)
which is canonically isomorphic to M(r,c1,¢3), with

AV(E) - zg < ‘;—1 < %‘ < Ay(B).

Finally, we obtain an infinite sequence of moduli spaces of semi-stable sheaves
all isomorphic to M(r,c1,c;). This phenomenon does not occur for moduli
spaces such that Az > 6(A,). Here are some examples of descriptions of
moduli spaces obtained with the preceding theorem :

M(1,0,1) ~ M(3,-1,2) ~ M(8,-3,8) ~IP, ,
M(4,-2,4) ~ M(24,-10,60) ~ M(140,—58,1740) ~IP; ,
M(4,-1,3) ~ M(11,—4,13) ~ M(29,—11,73) ~ N(3,2,3) .

Question 4 It is also possible to study more complicated moduli spaces (non
extremal ones) using some foundation of a heliz. We can for example obtain
descriptions of moduli spaces by monads. What is the best choice for the
generalized Beilinson spectral sequence? Or are there foundations of helices
that would lead to more interesting monads than those obtained from the
classical Beilinson spectral sequence?

6.2 The case of P,, n >3

If we want to use exceptional bundles to study a moduli space of semi-stable
sheaves on IP,, we have to choose a foundation of helix such that the Beilinson
spectral sequence associated to it and to sheaves in this moduli space is as
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simple as possible. This is the case of course if many E{"? are zero. Let
(Eo, ..., E,) be a foundation of helix, r,c1,...,¢c, integers with r > 1, £
a coherent sheaf on IP, of rank r and Chern classes ¢1,...,¢,, and EP?
the Beilinson spectral sequence associated to (Ey,...,E,) and €. Then, if
0 < i < n, we can hope that the terms E{’"i will be zero for all p only
if x(€ ® LOE;) = 0. This means that the point corresponding to £ in the
space of invariants belongs to the hypersurface S(L®) E;). Of course this is
not sufficient.

Suppose for example that all the E} "% for 0 < i < n — 2, vanish, and
that E7'™" = 0. Then we have an exact sequence

0 — Ei@H" Y (EQL™E,) — E:_@H" (€L VE,_;) — £ — 0.

In general the vanishing of the cohomology groups necessary to obtain the
above exact sequence are very hard to verify.

Let E,F be exceptional bundles on IP,, which are consecutive terms in
some helix, and m,k two positive integers. We want to study morphisms

Eg@c™ — F®ck
Let
W = Hom(E®C™,F®c*) = L(c™® Hom(E,F)*,c¥) .
on which acts the reductive group Go. Recall the characterization of semni-

stable and stable points of W:

Proposition 6.2 Let o be a non-zero element of W. Then a is semi-stable
(resp. stable) if and only if for every non-zero subspace H C €™, if

K =ao(Hom(E,F)" @ H),
we have

dim
dimgg 2 % (resp. >)

Let ¢ = dim(Hom(E, F)). Then we have dim(N(q,m,k)) >0 if and
only if
ry < i < !
q k :';q_’

where z, is the smallest root of the equation
X?2—gX+1 = 0.

Suppose that there exist an injective morphism of sheaves
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Eoc" — FQcCt.

Let £ be its cokernel. Then it is easy to see that the preceding inequa-
lities are verified if and only if the expected dimension of the moduli space
of semi-stable sheaves with the same invariants as £ is positive.

The first problem is the injectivity of stable maps.

Proposition 6.3 Let x be a point of IP,. Suppose that the canonical map
evy : B @ Hom(E, F) — F;
is stable (for the action of (GL(E;) x GL(F;))/C*). Suppose that

R

Then the morphism of vector bundles associated to a semi-stable element of
W is injective on the complement of a finite set, and injective if the preceding
inequality is strict.

The proof uses the same arguments as on IP,. Of course, the stability of
ev; is independent of .

Question 5 Is ev, always stable ¢

The answer is yes on IP;.

If we allow = to be smaller than the bound in the preceding proposition, it
may happen that a semi-stable morphism is non injective on some subvariety
of IP,,. For example let (Ey, Ey, Fs, E3) de a foundation of some helix on IPs.
It follows easily from the generalized Beilinson spectral sequence that if C is
a smooth curve in IP3, and F a vector bundle on C such that

HY(IL®E;®4,F)= H(L®E; ® i, F) = 0,
(where ¢ is the inclusion of €' in IP5) then there exists an exact sequence
0— HYLPE;®i,F)® E5 — HY(LWE, ® i.F)® E} — ...
.. — HY(Ey ® ixF) ® E} — i,.F — 0.
In this case, we get a morphism
HYL®E;®i,F)® E} — H(LWE, ® i,F) ® E}

which is non injective along C. For example, this happens if C is a degree
19 curve not on a cubic, F a general line bundle on ' of degree g+ 2 on ¢
(where g is the genus of ('), and

(Eo, By, Eq, E3) = (0,Q(3),Q"(4), @3(4)),
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where @ (resp. Q3) is the cokernel of the canonical morphism
O(-1) — O ® H(O(1))* (resp. O(-3) — O ® H(O(3))").
In this case we have a morphism
Q(-4)®c® — @*(-3)oc!!

which is non injective along C.

Question 6 What is the smallest number z such that if £ > 2, then

every semi-stable morphism is injective on a nonempty open subset of IP, ¢

The next problem is the relation between the (semi-)stability of mor-
phisms and the (semi-)stability of cokernels. On IP,, n > 3, no general
result is known. The only non trivial case where the problem is completely
solved is on I3, with E = O(-2) , F = O(-1) ,m =2, k=4 In
this case, R.M. Miro-Roig and G. Trautmann have proved in [9] that the
(semi-)stability of the map is equivalent to the (semi-)stability of the cokernel,
and it follows that the moduli space M(2,0,2,4) is isomorphic to N(4,2,4).

Question 7 In which cases is there an equivalence between the (semi-)
stability of morphisms and the (semi-)stability of cokernels ¢

Suppose that every (semi-)stable morphism is injective on a nonempty
open subset of IP,, and that m and k are relatively prime (so N(g,m, k) is
smooth). Then there exists a universal cokernel on N(q,m,k)xIP,, i.e a
coherent sheaf F on N(gq,m,k)xIP,, flat on N(g,m, k), such that for every
stable morphism «, if 7(a) denotes its image in N(g,m, k), then Fy(q) is
isomorphic to coker(a) (for every closed point y in N(q,m, k), F, denotes
the restriction of F to {y}xIP,). This family of sheaves on IP, is a universal
deformation at each point of N(q,m,k). It is also injective, 1e. il y, ¥
are distinct points of N(g,m, k) then the sheaves F,, ¥, on PP, are not
isomorphic.

Question 8 Let S be a smooth projective variety, F a coherent sheaf on
SxP,, flat on S, such that for every closed point s, F, has no torsion, F
is a universal deformation of F,, and such that if s, s' are distinct points
of S, the sheaves ¥, and F, are not isomorphic. Does it follow that S is a
component of a moduli space of stable sheaves on IP,, and F the universal

sheaf ?
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FLOER HOMOLOGY AND ALGEBRAIC GEOMETRY
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§1. INTRODUCTION

Let X be a smooth, oriented, closed 4-manifold whose intersection form
is not negative-definite. A choice of Riemannian metric allows us to con-
struct moduli spaces of Yang-Mills instanton connections on bundles over
X, and these can be used to define differential-topological invariants of
the 4-manifold which have been studied, and applied to concrete problems,
quite extensively over the last few years. Omne of the main themes in this
work is the calculation of the invariants by “cut and paste” techniques: if
X is the union of two manifolds-with-boundary X;, X2, meeting along a
3-manifold Y C X, then one aims to define “relative” invariants for the
pieces X, X3, together with a procedure for calculating the invariants of X
from the relative invariants. There is now a substantial theory—based on
techniques from differential geometry and global analysis—for doing this,
which has been developed by a number of authors. One prominent devel-
opment is the notion of Floer homology: at least in favourable situations
one knows how to associate “Floer homology groups "H F,(Y') to the (ori-
ented) 3-manifold Y so that the 4-manifold with boundary X; defines an
invariant ¥(X;) € HF,(Y). The other piece, X3, defines an invariant
U(X;) € HF,(Y), where Y denotes Y with the opposite orientation. There
is a dual pairing

HFE.(Y)®HF.(Y)— 2

and the invariant of X is expresssed by a “gluing formula” of the shape
U(X) =< ¥(X;),¥(Xz >.

We will go in to this into more detail in the next section We should say that
various authors, particularly Taubes and Morgan, Mrowka and Ruberman,
have developed rather different approaches to these questions, and many
of the problems that arise in practice can be handled by direct methods
without explicit reference to Floer’s theory. For brevity, however. we will
sometimes refer to all of these differential geometric ideas as “Floer homol-
ogy” techniques. The common threads running through all the differential
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geometric work in this area are first the use of a family of Riemannian met-
rics on X in which the neck around Y is stretched out into a long tube, and
second the importance of the representation variety of flat connections over
Y.

Now suppose that X is the 4-manifold underlying a complex algebraic
surface. If we choose a Kéhler metric on X, the instanton moduli spaces
may be identified with moduli spaces of stable holomorphic bundles, and
the invariants can be defined in a purely algebro-geometric way (to do this
in detail requires some technical work involving compactifications [L],[M]).
This gives another route by which one can calculate invariants, which has
also been developed quite extensively. The interaction between this algebro-
geometric approach and the “Floer homology” approach sketched above is
one of the interesting aspects of the subject, and leads to the following
state of affairs. The Floer homology approach, based on differential geom-
etry, allows the calculation of invariants for algebraic surfaces which can be
viewed as entirely algebraic entities. Moreover, the kind of decompositions
X1 Uy X, that arise often have an algebro-geometric interpretation. For ex-
ample, Y might be the link of an isolated surface singularity and X; might
be the Milnor fibre of the singularity, or a resolution. Another kind of ex-
ample arises when X is a small smoothing of a singular space with a normal
crossing where two components meet in a common curve. In these kind
of situations one might expect that there should be an algebro-geometric
version of the Floer homology theory, perhaps equivalent to the differen-
tial geometric one, but based entirely on algebro-geometric techniques. The
development of this conjectural theory seems to be an interesting problem
in algebraic geometry; an answer would be conceptually satisfactory and
might also break new ground: for example in algebraic geometry one can
study moduli spaces of bundles over varieties of any dimension—not just
surfaces—so one might hope that there is a similarly general “Floer theory”.
This line of thought might fit in with a suggestion of Arnold [A], about a
possible analogue of the Casson invariant for contact manifolds.

The remarks above are intended as a general motivation and background
for this article, but we must state at once that we will not make any sys-
tematic progress in the direction which is suggested; the development of
an algebro-geometric analogue of the Floer theory. Rather we will discuss
a number of topics which might eventually be seen as fitting into such a
theory. In §2 we will recall the main definitions in the subject in more
detail and then review the “Fukaya-Floer” construction developed by the
author and P.J. Braam in [BD2]. In §3 we will illustrate the ideas with some
very simple calculations for elliptic surfaces, motivated by recent work of R.
Friedman [F]. In §4 we will discuss the relation of this Fukaya-Floer theory
with bundles over a product of curves and with the “quantum cohomology”
product for moduli spaces of stable bundles over curves; as another simple
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illustration of the theory we calculate this product in the case of genus 2.

§2. FLOER HOMOLOGY AND THE FUKAYA-FLOER THEORY

We begin by recalling the definition of the 4-manifold invariants in more
detail. Let E — X be a U(2) bundle and fix a connection on A2E. We
write Mg for the moduli space of “U(2)-instantons” on E: connections 4
with curvature F(A) such that F 4+ +F is a multiple of the identity and
which induce the given connection on AZE. Here * is the Hodge *-operator
defined by a given Riemannian metric on X. The moduli space has a “formal
dimension”

dim Mg = 2(4c3(E) — c1(E)?) — 3(1 — by (X) + b+(X)),

where b, is the first Betti number and b% is the rank of the positive part of
the intersection form. We suppose that b+ —b, is odd so the dimension of the
moduli space is even, 2d say. Let Mz C MEg be the subset of irreducible con-
nections. There is a universal SO(3) = PU(2) bundle { — M} x X, which
yields a Pontryagin class in H*(M}, x X). We define p : Hy(X) — H2(M}E)
by u(a) = —ip1(€)/a, and a class v € H*(M3) by v = —ip1(€)/pt. Now
the main idea is that if there are no reducible connections in the moduli
space these cohomology classes are defined over all of Mg and we should
form pairings:
U4 b,0(X) =< p(a)®vb, [M] >,

where a + 2b = d. (In our discussion b will normally be 0, in which case we
may omit it from the notation.) The main issues that have to be addressed
here are the following,

(1) To avoid reducible connections. The case when ¢;(E) is “odd” (i.e.
not divisible by 2 in H2(X)/Torsion) works better here, just as—in
algebraic geometry—the stable bundle theory is easier in the “co-
prime” case.

(2) To choose a generic metric, or otherwise perturb the problem, so
that the moduli space is a manifold of the correct dimension.

(3) To compactify the moduli space suitably, or to define representatives
of the cohomology classes such that p(a)*»® has compact support
and can be evaluated on the moduli space.

These issues are now well-understood (see [MM] for a recent treatment) so
suffice it to say here that if 5*(X) > 1 one can define numbers ¥, o(X) in
the above fashion, and if b+ > 1 these are independent of the metric on X
and so give differential topological invariants of the 4-manifold. If bt =1
these numbers depend on the metric only through the “periods” of its self-
dual harmonic form [KM]. Letting « vary, the invariants are polynomial
functions on Hz(X).

Now suppose that X = X; Uy X2 , as in the introduction. In discussing
the Floer homology groups we will concentrate on the case when c¢,(F) is
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odd on Y, so there are no (projectively) flat reducible connections over
Y. We also suppose that all these flat connections are isolated and “non-
degenerate”, so the representation variety R(Y') is a finite set. For each
p € R we can define an index A(p) € Z/8. Let p4,p_ be two such flat
connections. The central objects in the Floer theory are the moduli spaces
M(p—, p+) of instantons over the tube ¥ x R with limits p4 at +oo, and
the dimension of M(p—, p+) is A(p+) — A(p—). More precisely, this moduli
space falls into a collection of components M?(p_, p+), labelled by a relative
second Chern class, and the component M? has (formal) dimension p, equal
to A(p+) — AM(p—) modulo 8. The translations of the tube act in an obvious
way on the moduli spaces so we get “reduced” moduli spaces M? /R of
dimension one less.

Now Floer’s theory proceeds as follows. If A(py) — AM(p=) = 1 the
space M!(p—, p+)/R is a finite collection of points and we define a num-
ber n(p4,p—) by counting these points with appropriate signs. For each
A € Z/8 we let Cy be the Q-vector space (we will work with rational co-
efficients but this is not really essential) generated by points p € R with
A(p) = A. We then interpret the numbers n(p_, p) as the matrix elements
of a collection of maps:

6 . CA — C)\_.l,
(< p->) = nlp_,ps) <pt >.

The crux of the theory is that 82 = 0, so we have associated Z/8-graded
Floer homology groups HF,(Y'). Changing the orientation of Y essentially
reverses the grading on the chain conmplex and we get a dual pairing be-
tween HF,(Y) and HF,(Y) induced by the obvious pairing on the chain
groups.

We now come to the invariants for the manifolds-with-boundary X, X.
We choose complete metrics on the interiors of these manifolds which con-
tain half-infinite cylinders Y x [0,00),Y x (—o0,0] as their “ends”, and by
an “instanton on X;” we mean a (finite energy) solution of the equations
over the corresponding non-compact manifold. Any finite energy solution
has a flat limit along the cylinder, and for each p € R(Y) we can form
moduli spaces M(X;,p) of instantons with this limit; again, these moduli
spaces will have components of various dimensions. If M(X,, p) has a com-
ponent M?4(X,, p) of dimension 2d we can mimic the discussion for closed
4-manifolds and define, for any a € Hz(X,) a number

¢a,b,a(X1aP) =< P’(a)aVb’ [MZd(lep)] >,

where a + 2b = d. We will sometimes abbreviate this to ¥(X;, p). The next
step is to define, for fixed a, b, @, a chain

¢(X1)=Z¢(X1,p) <p>
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in CF,(Y). One shows that this is a cycle in the chain complex, and that
its homology class

Y(X1) = VapalX1) € HE(Y)

is independent of the choice of metrics. Likewise we get a Floer homology

class Wy pr ot (X2 ) in HF,(Y) and the gluing formula is

n
\I’n,b+b’,a+a’(X) = Z’ (a) \I’a,b,a(Xl) \I/a’,b’,a’(XZ)
a,a
ata'=n

This describes the part of the X-invariant which lies in s*(H?(X,) +
H?(X;)) inside the full polynomial algebra s*(H?(X)). One point here is
that if 5*(X) = 1 then the left hand side of the formula is not a priori
defined as an invariant of X, because of the dependence on the periods
of the harmonic form, while all the terms in the right hand side are (dif-
ferential) topological invariants. The explanantion is that in this case the
formula should be read as giving the invariants for X in the “chamber”
corresponding to the metrics with a very long neck.

The things that need to be done to complete the theory are:

(1) To extend the gluing formulae to all of s*( H2(X)), that is to classes
a € Hy(X) which come from relative classes a; € H2(X;,Y) with
the same boundary in H;(Y).

(2) To deal with the problems that arise from reducible connnections.

These points, individually, are quite well understood. A prototype case for
the second aspect is that of a connected sum X = X;§X5: in this case ¥
is just the 3-sphere. If bt > 1 for each of X;, X5 the the-invariants of X
vanish in this situation; if one of the factors, X, say, has a negative definite
intersection form then one encounters formulae expressing the instanton
invariants of X in terms of the similar invariants of X; and the abelian
reducible connections over X;. This is straightforward in low dimensional
cases, but the general case leads into difficult questions to do with the
compactification which have been tackled succesfully by Orzvath [O]. (The
corresponding discussion in algebraic geometry, when X; = Wz, involves
comparing moduli spaces of bundles on a surface with those on its blow-
up.) For splittings by general 3-manifolds ¥ one can define equivariant
Floer homology groups [AB] and gluing formulae which are valid in low
dimensional cases; needing complicated correction terms in general for just
the same reasons as in the case of connected sums.

Turning to the second aspect: a complete theoretical treatment here is
available in terms of certain “Fukaya-Floer groups” [BD2], which we shall
now review. Let v be a loop in Y and form a complex CFF, = CFF,(Y,7)
with a double grading:

CFF;=CF(Y)®CFi;®CF;4®....
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Here C'F, is the Z-graded complex defined by the Z/8- graded complex
CF,, in the obvious way. There is a differential 8 : CFF; — CFF;_,,
which has one component given by the ordinary Floer differential

60 . CTF,'_J' — C~F,'_.J'_.1,
but also other components @ =3, 5, On:
6,, : C~F,'_J' — C~F,'_.J'_.2n_.1 .

The differential 8, is defined by its matrix entries, as for 8,. For pi,p—
with index difference 2n + 1 we consider the 2n-dimensional moduli space
M2 +1(p_ p1)/R, which we represent as a submanifold of M(p—, p;) by
fixing a “centre of mass” along the tube. We can define a 2-dimensional
cohomology class (v X R) over M2"*! /R by using a relative version of the
construction for ordinary classes in Hy. The p_, p4 matrix entry of J, is
obtained by “evaluating” p(y x R)™ on M2+ (p_, p.)/R. This construc-
tion gives a filtered complex (CFF,, d) with cohomology HFF,(Y,v) and
a spectral sequence:

HF,(Y)® H,(CP*) = HFF,(Y,)

The groups HFF, depend only on the homology class of 4 in H,(Y) (or,
more precisely, a choice of homology between two such loops induces a nat-
ural isomorphism between the Fukaya-Floer groups). The first differential
in the above spectral sequence is

ds : HF; — HF;_3,

and this can be identified with a cup product in Floer homology. In general
if A is a class in Hp(Y), for p = 0,1,2, there is a corresponding class
p(A) in the (4 — p)-dimensional cohomology of the space of connections
over Y. The Floer homology groups can be regarded formally as homology
or cohomology groups of this space of connections in “half” the (infinite)
dimension of the space, and there is an analogue of the usual cup product
with u(A) mapping the Floer homology of Y to itself and shifting degree
by —(4 — p) ( this becomes +(4 — p) if one chooses to work with Floer
cohomology, which is a trivial change of notation). The differential d; is
this cup product associated to the class A = v in H,(Y).

The gluing construction in this theory is a natural extension of that in the
ordinary case described above. If a; is a relative classes in Hz(X,,Y) with
the boundary v in H;(Y) we define cohomology classes p(a;) over moduli
spaces of instantons over X; with fixed limits, and then define numbers by
evaluating powers of these on the moduli spaces. These numbers give the co-
efficients of a cycle in CF'F,, and the corresponding homology class ¥, (X;)
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in HFF,(Y, ) is independent of choices. If a; is a similar relative class in
H,(X,,Y), with the same boundary v, we get an invariant in HFF,(Y, 7).
Now there is a class & € Hz(X) given by gluing a; and a2z, and the main
formula is an expression for ¥, o(X) via a sequence of bilinear pairings on

the Fukaya-Floer groups 0, : HFF,(Y)® HFF,(Y) — Q:
\I/a,a(X) = 0a( Vo, (X1), ¥ar (X2).

§3. ELLIPTIC SURFACES

In this section we will apply the theory above to make some concrete
calculations, inspired by the work of Friedman [F]. We consider the family of
manifolds S,,n > 1 underlying simply-connected elliptic surfaces, without
multiple fibres, and with p; = n — 1. It is well known that there is a
unique deformation class of such surfaces, for each n, [FM]. We will think
of the manifolds in the following way. The surface S is the rational elliptic
surface, obtained by blowing up the plane at the 9 intersection points of
two general cubic curves and the elliptic fibration m : §; — CP? is induced
by the pencil of cubics generated by these two. Then S,, with an elliptic
fibration 7, : S, — CP! is given by pulling back m under a degree n map
from CP! to CP!. If we allow this branched cover of CP! to degenerate
we can easily see that S, can also be obtained as a small smoothing of
the singular surface given by gluing n copies of S; along pairs of fibres.
From the topological point of view, S, is the “fibrewise connected sum” of
n copies of S; Thus if we let W be a neighbourhood of a smooth fibre, i.e.
the manifold-with-boundary D? x T2, and Z, be the complement of W in
S, we can write

Spn1=2Zpn Uy W, Sy =2,_1VUy Z;,

where the gluing is performed across the 3-torus Y. We want to compute the
invariants defined by U(2) bundles E, over S,, where ¢,(E,) is odd—say
1—on the fibre.

Now the Fukaya-Floer theory becomes very simple in this situation: in-
deed so simple that the complicated apparatus described in the previous
section is scarcely necessary. We need to consider the projectively flat bun-
dles over Y = S! x T? with first Chern class dual to the S! factor. If we
restrict to the 2-torus there is just one such connection, up to equivalence,
corresponding to the well known fact in algebraic geometry that there is
just one stable bundle with odd degree and fixed determinant over a curve
of genus 1. Going to the 3-torus we get two points in our representation
variety, because there are two choices 1 of the holonomy around the S!
factor. Call these points p*,p~ respectively. It is also easy to see that
the index difference between these points is 4—corresponding to the gen-
eral fact that the SO(3) version of Floer homology is naturally Z/4-graded;



126 DONALDSON: Floer homology and algebraic geometry

see [BD1] for example. Thus, with a suitable normalisation of the grading,
the Floer complex CF,(Y) in this situation has one generator in each di-
mension 4j, and there is no room for any differentials so this also gives the
Floer groups. Likewise, when we go to the Fukaya-Floer theory, with the
homology class v corresponding to the S! factor in Y = S! x T?, there are
still no differentials, for reasons of parity, and the Fukaya-Floer groups have
a free set of generators p} in degree 2k, p; in degree 2k + 4.

We want to discuss invariants defined by 4-dimensional moduli spaces
over closed manifolds and in this case the Fukaya-Floer gluing theory boils
down to the following very simple set-up. Let X = X; Uy X, be a decom-
position of a 4-manifold across a copy of the 3-torus Y and F be a bundle
over X with dimM(E) = 4, and which restricts to the bundle considered
above on Y. Let a be a class in Hy(X) which is formed from relative classes
a; in X; with common boundary the class v specified above. Then, after
possibly interchanging X; and X5, the relevant moduli spaces are:

(1) 4-dimensional moduli spaces M*(Xy,p4), M*(X2,p-) which give,
by pairing with classes p(a;)%, numbers U5(X, ), ¥2(X;) say.

(2) 0-dimensional moduli spaces M°(X1,p-), M°(X2, p4+) which give,
by “counting points”, numbers Wo(X; ), ¥o(X2) say.

The gluing formula is just
< p(a)?, [Mg] >= 3(X1)To(Xz) + Yo(X1)Ta(X2).

We will also need the formula appropriate to 0-dimensional moduli spaces,
and of course this is simpler, having the shape: Wo(X) = Wo(X;)¥o(X32).
With this theory in place we will now proceed with our calculation. (Since
this is intended mainly as an illustration of the general theory we will not
dwell too much on one technical point that enters: the proper treatment of
signs and orientations.) There will be four pieces of geometric input into
the calculations, i.e. calculations of invariants in special cases. The first is
just for the invariant ¥o(W) defined by the zero-dimensional moduli spaces
over the tubular neighbourhood W. Each of the connections p* over the
boundary 3-torus bounds a unique projectively flat connection over W, since
the holonomy on the circle linking the torus is in the centre £1. Then there
is a simple general principle, derived from the Chern-Weil theory, that tells
us that if an instanton moduli space contains any flat connections then it
contains only flat connections (see [BD1], for example). Thus the moduli
spaces over W consist of just one point, and one finds that the invariants
are 1. This gives us a very simple gluing formula in the following general
situation: suppose that V; and V2 are manifolds each containing a copy of
the torus neighbourhood W, and we form a new manifold V;§Vo—a kind
of generalised fibrewise connected sum——by cutting out each of the copies
of W and gluing the resulting boundaries. (So in this notation S, is the
multiple fibre sum S;f...45:.) Then applying the gluing formula for the
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zero dimensional invariants times we get the rather obvious rule for ¥,:
To(V1iV2) = Wo(V1)¥o(V2).

The next two pieces of geometric input are calculations for the surface S,.
This surface is a K 3 surface, and as such the invariants have been calculated
in a variety of ways [OG],[FS], the most direct being to use the algebro-
geometric work of Mukai [Mu] (compare [DK]). In any case we will assume
known the facts that

To(Sz) =1

and

U3 5(S2) = B.B for B € Ha(S3).

The first of these, and the multiplicativity property, immediately tells us
that
¥y(S,) =1 for all n.

Now let us look at the 4-dimensional invariants ¥4 g(S»). If the ¥o-invariants
of V1,V; are 1 the gluing formula tells us that if 5 € H2(Vi4V2) is the sum
of terms §; € Hy(V;), each of which can be represented outside the copy of
W, then

U2,8(V11V2) = 2,4, (V1) + ¥2,5,(V2).

We deduce easily from this, and the calculation for S;, that ¥ 5(S,) is
B.8, for any n and for classes 3 which can be represented outside a tubular
neighbourhood, i.e. for classes where the intersection 5.F with the fibre
is zero. The remaining problem is to deal with the classes which intersect
the fibre, and it suffices to consider a “horizontal” class h in H3(S,;Q)
with h.h = 0, A.F = 1. In the general picture we consider classes a; €
H,(V;) which meet the boundary of W in compatible loops, and form a class
a € Hz(V). Then three applications of the Fukaya-Floer gluing formula,
together with the discussion above of the 0-dimensional invariants, gives:

Us.a(V) = o (V1)T32,0,(V2) + Wo(V2)¥2,0, (Vi) — 2W2, g(W) Wo(V1)¥o(V2)

where H is the class in Ha(W,0W) represented by a small transverse disc.
Let us write U2 g(W) = A. Applying this formula to our elliptic surfaces
we get:

\I/Z(Sm+n) = \I’Z(Sm) + \I/Z(Sn) - 2/\7
and hence

Uy(Sn) = (c — 2\)n + 2,

for some constant c. Then, knowing that the invariant vanishes for n = 2,
we have

Wy 4(Sn) = (2= 1)),
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for the horizontal class h. Putting this together with the other case we get,
for any o € H2(S,),

U2 o(Sh) = a.a + (2 — n)A\(@.F)?,

where F is the class of a generic fibre.

The remaining task is thus to compute the number A, an invariant of the
manifold-with-boundary W = D? x T2, and this brings us to our last piece
of geometric input. We can get back into the setting of closed manifolds by
considering the “double” S% x T? of W. The gluing formula gives

2) = Uy y(S? x T?)

where now we write H for the homology class of a slice $2 in $2? x T2
So the problem comes down to the calculation of an invariant defined by a
4-dimensional moduli space of instantons on a bundle E over S% x T? and
the relevant Chern classes are

ci(E) = [S% +[T7], c2(E)=1.

Here we must be careful however because b (5% x T2) = 1 so the invariants
of this manifold are only defined on a system of chambers, and the remarks
in the previous section apply: we consider invariants defined by a metric
(for example a product metric) in which the T2 factor is very small. The
4-manifold S? x T? is of course a complex surface, so we can interpret our
moduli spaces as moduli spaces of stable bundles. In particular they have
a natural complex orientation, which turns out to be the appropriate one
for the gluing theory above. Let us write Ly for the Hopf line bundle
over $?2 = CP!, and regard it also as a bundle over the product S? x T2.
Similarly fix a line bundle Lt over T? with degree 1 (i.e. fix a base point in
the torus). The moduli space corresponding to the U(2) instantons is that
of stable bundles with fixed determinant Ly ® L.

Proposition. Let M be the moduli space of stable rank-2 holomorphic
bundles E over the complex surface $% x T? withcz(E) = 1 and with A2E =
Ly ® Lt and with respect to a polarisation w = F + eH € H%(S? x T?)
where € < 1. The invariant U, g(S? x T?) =< p(H)?,[M] > is 2.

Given this Proposition we see that A = —1 and we get:
U2 o(Sn) = aa + (n — 2)(a.F)?,

in agreement with [F], for the case of no multiple fibres. (V. Munoz has re-
cently extended this approach to obtain the results of [F] for elliptic surfaces
with multiple fibres.)

The proof of this Proposition is a straightforward piece of algebraic geom-
etry. The critical values for the polarisation parameter e arise when there
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are decomposable semi-stable bundles and it is easy to see that the only
reduction with our Chern classes is Ly @ Ly, which is semi-stable only if
e = 1. We claim that if e < 1 the stable bundles are precisely the non-trivial
extensions

0-Ly®Lg—E—Ly®L; —0,

where L¢ is the pull-back to the product surface of a line bundle of degree
0 over the torus. To see this we note first that if E is a stable bundle
of the given topological type then for any L the Euler characteristic of
EQLE ® LE—I is zero. The second cohomology group of this bundle is dual
to HYE*® Ly ® K) = H(E ® L ® L7!') and this must vanish for a
stable bundle, with any polarisation, since:

deg(L}y ® Lr) > 1 deg(E) = 1 deg(Ly ® L7).

So either there is some { for which there is a non-trivial section of E ®
Ly ® LE—I or all the cohomology groups of these bundles vanish, for all £.
To rule out the latter alternative we apply the Grothendieck-Riemann-Roch
formula to the projection map 7 from S®T to T, where T is identified with
the Picard variety of degree-zero line bundles L¢ over S. We take the direct
images R'(my), of the bundle 7}(E ® L7') ® P where P is the Poincare
bundle over § x T. I the second alternative holds then the alternating sum
of the Chern characters of these direct image sheaves is 0, but on the other
hand this alternating sum can be computed in terms of the characteristic
classes of E using the Grothendieck-Riemann-Roch formula. Actually, we
can avoid making this calculation directly by just using the fact that it
depends only on the topological type of E, and then finding the direct
images for any other bundle of this topological type, such as Ly @ L.
In any event this argument shows that the alternating sum of the Chern
characters is non-zero, so ruling out the second alternative. Thus there is a
¢ for which there is a non-trivial section of E @ L;il ® LE—I. If this section
vanishes on a divisor D then the stability condition implies that D = L%

for some integer @ > 0. But then E @ L;{(H'a) ® LE—I has a section with
isolated zeros, and hence has non-negative second Chern class. On the other
hand c2(E ® L;{(H'a) ® LE——I) = —a, so we must have a = 0 and there is
a nowhere-vanishing holomorphic map from Ly @ L; to E, which gives the
desired extension. Conversely it is easy to check that all extensions of this
form are stable when ¢ < 1. (When ¢ > 1 this argument shows that the
moduli space is empty and the behaviour here is an example of the general
discussion of the change of moduli spaces with the polarisation given by
Mong [Mo] and Qin [Q]. In fact another way of getting this description of
the moduli space is to see that the space is empty when ¢ is large, then use
these general results to show that the “new” stable bundles created when e
moves across 1 are just the extensions above.)
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Now the extensions for fixed ¢ are parametrised by
HY(S;(Lr ® Le) ' ® Ly) = HY(T;(Lr ® L¢)™") @ H(S*; Ly) = C2.

The isomorphism class of the middle term depends only on the correspond-
ing projective space, which is canonically identified with $2 = P(H°(Lg)),
since the other factor H'((LT ® L¢)™! is 1-dimensional. On the other hand
the line bundles L, are parametrised by ¢ € T, which is canonically iden-
tified with Pico(T) by the choice of base point. So we conclude that the
moduli space M can be identified with the surface $% x T itself. Thus our
remaining task is to identify the cohomology class u(H) in the H%(M) in
terms of this description.

Consider first the restriction of u(H) to a slice 52 = CP! in the moduli
space. Thus we are considering the projective space in the moduli space
obtained by fixing L¢ and varying the extension. This is a familar problem
in the subject: more generally one can consider a general base space X, line
bundles L, L; over X and the family of bundles given by extensions 0 —
Ly —» E — L; — 0, parametrised by the projective space P = P(H!(L; ®
L3)). If a is any class in Hy(X) the corresponding class p(a) € H(P) is

% < C](Lz)—CI(Ll),a >

times the standard generator of H2(P). (The calculation is explained, in the
langnage of gauge theory in [DK], Chapter 5, and it is easy to translate this
to the holomorphic setting.) So in our case we conclude that u(H) restricts
to —1/2 on the S% slice. (The sign here is that given by the complex
orientation, which turns out to be the right one for the gluing discussion.)

The calculation of the restriction of u(H) to a “vertical” slice T C S2x T
in the moduli space is less standard. We will exploit the action of the trans-
lations of the torus on itself, and hence on the product $? x T, but this
involves a fiddly point. The translations do not act directly on the mod-
uli space M because they do not preserve the fixed-determinant condition
det E = Lp. They do act naturally on the moduli space, M’ say, of pro-
jectivised bundles P(E) but this is not quite the same as M. In fact M is
a 4-fold cover of M’| since if 7 is a point of order 2 in T, so L,z7 is trivial, a
bundle given by an extension

0-Lu®Lg—=E—Lr®L; =0
is projectively equivalent to one given by a similar extension
0—Ly®Legtg - E®Ly— Lr® L, — 0.

Thus the moduli space M’ is canonically identified with the original surface
S? x T, and its 4-fold cover is only identified with this surface when a base



DONALDSON: Floer homology and algebraic geometry 131

point is fixed. In turn the translations in the T factor of the base space act
in the obvious way on M’—simply transitively on each slice. Now let P be
the universal projective bundle over X x M'. For clarity we will write the
original base space X as $2 x T} and the moduli space M’ as 52 x Tp. The
above property of the translations means that the restriction of P to the
mixed product S? x T is isomorphic to the projectivisation of the original
bundle E. Thus the restriction of u(S?) to the Ty factor in M’ is just

c2(B)— jc3(E)=1-12=1/2

|

Passing to the cover M we introduce a factor of 4, so p(H) is 2 on the
vertical slice T in M. Finally, then, we see that in terms of the standard
generators H, T for the cohomology of the moduli space M,

p(H)y=2H — LT
so < p(H)?,M >=—22.1 = -2, as desired.

§4. CURVES OF HIGHER GENUS AND QUANTUM COHOMOLOGY

In the previous section we have illustrated how the theory can be applied
in a very simple case. We will now discuss some topics that arise when one
considers the analogous programme for curves of higher genus. One would
like to study the following set-up. Let ¥ be a complex curve of genus g
which embeds in two surfaces Z;,Z; with trivial normal bundle. Let Z,
be the singular surface with a normal crossing Z;, Ug Z; and Z,;,t € C
be a standard smoothing of this surface, so for non-zero t the surface Z, is
smooth with underlying 4-manifold obtained by cutting out neighbourhoods
of the curve and gluing the resulting boundaries; copies of ¥ = ¥ x S!.
Algebro-geometrically, Z; is a degenerating family of surfaces, with Z, as
the singular fibre. One would expect that the analogue of the differential-
geometric gluing theory should be found in an algebro-geometric discussion
of degeneration of moduli spaces, and the latter theory has been developed
by Gieseker and Li [GL] (This extends extends work of Gieseker [G] in the
case of curves, which has been applied by Thaddeus to the mathematical
formulation of the “Verlinde fusion rules”, which are intimately related to
the gluing problems discussed in this article, compare [D] ). Of course the
notion of a “bundle” (locally free sheaf) over the singular space Z, makes
sense, but in the Gieseker and Li theory the right moduli space to attach
to this surface includes more general objects. One considers also bundles
over repeated blow-ups Zék) of Zy. Here Zél) is the blow-up of Z along the
double curve X, which is a surface with three components Z,,Z,, ¥ x CP!
glued along copies of X: Zéz) is obtained by blowing up one of the double
curves in Zél) and so on. So Zék) contains a chain of k copies of ¥ x

CP! linking copies of Z1,2Z2. A bundle over Zék) is given by bundles over
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Z1,Z, and k bundles over ¥ x CP! whose restrictions to the various double
curves are isomorphic, and with a choice of isomorphisms along these curves.
Plainly this should correspond to the differential-geometric description of
instantons over the 4-manifold with a long neck in terms of a chain of
instantons over the tube ¥ x R = ¥ x ! x R. To understand this picture
more clearly one would like to have an algebro-geometric description of these
instantons over tubes, in the same spirit as the description of instantons
over a compact surface in terms of stable bundles. As in the rest of this
paper, we will restrict attention to the situation when we have bundles
whose restriction to ¥ has odd degree, so we avoid complications from semi-
stability and reducible connections. In this case we make the following
conjecture:

Conjecture. There is a natural correspondence between

(1) finite-energy U(2)-instantons over ¥ x S' x R, with ¢, odd over X,
(2) rank-2 holomorphic bundles over & x CP! with odd degree over I,
and whose restrictions to ¥ x {0}, X x {oo} are stable.

Note that the finite-energy instantons have limits which are projectively
flat connections over ¥ x S'. Up to a choice of holonomy +1 around the
circle these correspond to projectively flat connections over ¥, and so in turn
to stable holomorphic bundles over ¥ by the Narasimhan-Seshadri theorem:
in the conjectural correspondence above the restrictions of the holomorphic
bundle should of course match up with the limits of the instanton. (The
choice of +1 holonomy around the circle goes over to the parity of the first
Chern class over the CP! factor.)

One can also discuss the case of normal crossings along a curve with non-
trivial normal bundle, when the relevant 3-manifold is a non-trivial circle
bundle over ¥. In this case results in the same general direction as the
above conjecture, relating the instantons over the tube to holomorphic bun-
dles over a ruled surface, have been obtained by G-Y. Guo in his Oxford
thesis: it seems very likely that similar techniques can be applied to prove
the conjecture. In any event, if we assume something like this to be true we
see how to translate much of the gluing theory into algebro-geometric lan-
guage. First, the Floer homology groups H F,(X x S!) are just the ordinary
homology groups of the moduli space N(X) of stable bundles with fixed odd
determinant over ¥ (with the grading reduced modulo 8); which have been
extensively studied from many points of view. To see this one has to discuss
the “Morse-Bott” version of the Floer theory in which the Chern-Simons
function has a critical manifold, extending the case of isolated critical points
as discussed in §2. If v is a classin H;(X x S!) there is a Morse-Bott descrip-
tion of the Fukaya-Floer groups HF F,(X x S',v) using a complex made
up of an infinite number of copies of the ordinary singular chain groups of
N(X), with a differential defined by the instanton moduli spaces on the tube
and the maps to N(X) given by the limits at +oo: that is, assuming our
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conjecture, by certain moduli spaces of bundles over £ x CP! and the maps
induced by restriction to ¥y, Xoo. In turn one can describe the differentials
in the spectral sequence HF,(X x §') @ H,(CP*®) = HFF,(X x S!,v) in
terms of these moduli spaces of holomorphic bundles. In fact a variant of an
argument due to Furuta [DFK], shows that if v is the class of the circle fac-
tor in ¥ x S then the spectral sequence degenerates, so that HFF,(Zx S?)
is just an infinite sum of copies of the homology of N(X) in this case.

We will now bring another theme into this discussion, involving the sym-
plectic geometry of the moduli space N(I) of bundles over the curve X,
amplifying some remarks in [BD2]. In general, if (V,w) is a “positive”
symplectic manifold, with first Chern class a positive multiple of [w]—in
particular for a complex projective Fano manifold— there is a “quantum
product” structure on the cohomology of V' defined by the holomorphic
maps from the the Riemann sphere into V, with some compatible almost-
complex structure. This is a very active area of research at the moment
[RT],[KMa),[W]. Roughly speaking, if M is a moduli space of pseudo-
holomorphic maps from S? to V, then evaluation at the points 0, 1, co gives
amapr: M — V xV x V. Ignoring problems of compactification, the
image (M) defines a homology class in V' X V x V which can be regarded
as a map from H*(V)®@H*(V) to H*(V). The quantum product is given by
the sum, over all moduli spaces M of dimension less than 3dim V', of these
maps. It is an associative and graded-commutative product on the ordinary
cohomology. The constant maps give the ordinary cup product and the
other moduli spaces give correction terms, which are not compatible with
the integer grading on the homology. This deformed product is an invari-
ant of the symplectic structure on V, encoding data from the parametrised
holomorphic curves. There are further invariants [RT] which encode more
data of the same kind, for example from curves of higher genus.

Now the moduli space N(X) is a Fano manifold, so this pseudo-holomorphic
curve theory can be applied, and is intimately related to the questions
in gauge theory and holomorphic bundle theory discussed in this article.
This is a manifestation of a relation between the Yang-Mills instantons over
L x S! xR and holomorphic maps from S? to N(X), which can be understood
in two ways. The first way, due to Dostoglou and Salamon [DS], involves
studying the “adiabatic limit” of the instanton equations over ¥ x S*x R, for
Riemannian metrics in which the ¥ factor is very small. The second way
goes through the description of these instantons in terms of holomorphic
bundles, assuming our conjecture. If a holomorphic bundle E over ¥ x CP!
is stable on Xy, Xoo it must be stable on the generic fibre ¥y = X x {1} in
the product. On the other hand it is clear that the bundles over ¥ x CP!
which are stable on allthe fibres £ correspond precisely to the holomorphic
maps from CP! to N(X). For a family of bundles U over T one expects
that the set of unstable bundles forms a subvariety of codimension ¢, so if
g > 1 one expects that the bundles over ¥ x CP! which are stable on all the
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fibres to be an open subset whose complement has codimension ¢ — 1: i.e.
one expects a natural isomorphism between the moduli spaces of instantons
and holomorphic maps outside a subvariety of this codimension. (One can
probably make this more precise using the same kind of techniques as in
[F): if E is a bundle over & x CP! which is stable over the generic slice 2
but unstable over a finite number of exceptional slices then there is another
bundle E’ canonically associated to E which is stable on all the slices, and
E should be obtained from E’ by “elementary modifications” over these
slices.)

In the above circle of ideas, Salamon has recently shown that the quantum
product on the cohomology of N(X) agrees with the cup product operation
on Floer homology in the gauge theory setting. That is, if 4 is a class
in H;(X) it defines a 3-dimensional cohomology class p(+) in the space of
connections over S x ¥ which gives a degree 3 multiplication on the Floer
cohomology. (We will switch to cohomology here, to fit in with the discus-
sion of the quantum product.) On the other hand p(+) can also be regarded,
by restriction, as a class in H*(N (X)), with N(X) viewed as moduli space of
flat connections. Salamon’s result is that the quantum product with () in
H*(N(X)) agrees with the product with p(X) in the Floer homology, under
the isomorphism between HF*(X x S!) and H*(N(X)). One can also see
this, assuming the conjecture, by directly identifying the moduli spaces of
instantons involved in the definition of one product with the moduli spaces
of holomorphic maps involved in the definition of the other.

In summary, we see that if ¥ comes from H;(Z) the first differential d3
in the spectral sequence computing the Fukaya-Floer homology of ¥ x S*
is given by the quantum product on H*(Ng). One should be able to go
further and view the higher differentials as some kind of quantum Massey
products. Indeed it should be possible to define these higher operations,
and groups like the Fukaya-Floer groups for arbitrary positive symplectic
manifolds (although it seems quite likely that the higher operations are
trivial for Kéhler manifolds).

Returningto our overall programme of studying the invariants for smooth-
ings Z: of Zy Ug Z2; our general theory would give a procedure for doing
this if we understand both the Fukaya-Floer groups for ¥ x S!, which we
have discussed above, and the invariants for various basic cases. In par-
ticular, as in the calculation for elliptic surfaces in §3, one would need to
know invariants for the manifold ¥ x $2, which can be described in terms
of stable holomorphic bundles over this surface. Now there is again a close
connection between these bundles and holomorphic maps from S? into Ng.
Indeed one would expect that the moduli spaces of bundles and maps are
birationally equivalent once ¢ > 1, since the generic bundle on the product
should be stable on all slices. However it is not clear if there is any useful
relation between the instanton invariants of the product S? x ¥ and the
various invariants defined by holomorphic curves in N(X), since questions
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of compactification become very important. In fact the case of genus 1,
when the instanton invariants are non-trivial even though the moduli space
N(X) is just a point, suggests that the relation will not be very close, in
contrast to the case of the product structures and Fukaya-Floer homology
discussed above.

Finally, to illustrate these theoretical ideas, and perhaps make a small
step towards the goal of calculating invariants for manifolds like the smooth-
ings Zy, we will calculate the quantum product on the cohomology of N(X)
in the case when ¥ has genus 2, so N = N(X) has complex dimension
3. This moduli space is very well understood. As a complex manifold it
can be identified with the intersection of two quadrics in CP® [N], and the
cohomology H*(N,Z) is made up of:

(1) copies of Z in H°, H2 H* HS;
(2) the image of an isomorphism p : H1(Z,Z) — H3(N, Z).

Let us write 1 = hg,h = hy, hy, he for the integral generators in the even
dimensions; the class k is just the restriction of the hyperplane class in CP3.
The ordinary cup product structure is well-known to be:

hUh =4hy, hUhy=hs, p(m)Up(r2)=(1n.72)he,

where ( . ) is the intersection product on H1(X). The quantum cohomology
is Z/4 graded, so there are just 3 non-trivial groups which are H'(N) &
H4(N), H*(N) ® H%(N) and H3(N).

The first new term in the quantum product comes from the moduli space
of degree 1 maps from S2 to N, i.e. to the space of lines in N. This space
of lines has been studied a good deal in algebraic geometry {(compare the
last chapter of [GH]) and is a copy of the Jacobian J(XI) of the curve. In
terms of bundles the lines in N correspond to families of extensions

0—=Lyp—=FE—=L;—=0

where Lo has degree 0 and L; has degree 1. For any choice of line bundles
H'(L} ® L) has dimension 2, so we get a family of bundles parametrised
by CP!, which gives a line in the moduli space. Then varying Lo, L; with
fixed determinant Lo ® L1 we get a family of lines parametrised by the
Jacobian of ¥. The calculations we need for the quantum product can be
expressed in terms of the geometry of lines in the intersection of quadrics
or in terms of the Chern classes of the Poincaré bundle for this family of
extensions, a vector bundle over a S% bundle over the Jacobian. In any
event the geometric information we need is the following.

(1) The number of lines in N passing through a generic point is 4.
(2) I I, 12 are generic lines in N then the number of transversals in N
to this pair (i.e. the number of lines that meet both /; and 1) is 2.
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To see the first of these: the lines in a single quadric through a given
point P form a copy of a quadric surface in a CP? inside the projectivised
tangent space of CP® at P. So the lines in two quadrics correspond to
the intersection of two conics in CPZ%, which gives 4 points. To see the
second we observe that /;, Iz span a CP? in CP?, and the whole discussion
takes place within this CP®. So we are reduced to counting lines in the
intersection of quadrics in CP3, and we need to know the elementary fact
that if two such quadrics meet in a pair of lines from one ruling then they
also meet in a pair from the other ruling.

We will now explain how to compute the whole quantum cohomology
structure from this geometric data. We first consider the component of
the product which maps H?(N) @ H*(N) to H°(N). This comes from
the component of r(M) in Ho ® H; @ He. If we represent h by generic
hyperplane sections Hy, H2 C N and the fundamental class by a point p
in N then this component is given by the number of degree 1 holomorphic
maps f with f(0) = P, f(1) € Hi, f(co) € Hz. But since any line meets
H,, H; in just one point this is the same as the number of lines through P
computed above. So we see that the quantum product is

In the same way, since a line is Poincaré dual to h4, the second calcula-
tion gives the component of the quantum product from H?> @ H* — H>—
depending on the component of r(M) in H; ® Hy ® Hy—and we have

hhy = he + 2h.
Now let 1, p2 be classes in H*(N) with cup product hg. We know that
h,ul =0

since it lives in the group H'(N)®H®(N), which vanishes. Thus Ay pz = 0.
Now we can write g2 = he + ah for some integer @, so we must have

hhe + ah® =0,
that is
hhe = —40[(h4 + 1)

Now the component of hhe in H* depends upon the same component in
H; ® H2 @ He in the triple product that we used before (by the symmetry
between the three points 0,1, ). So

hhe = 4hy + 3,
for some S, and combining the information we see that « = —1 and = 4.

So
hhe = 4(hy + 1) = A%,
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Now eliminating all the generators except h, we write

hy=31h% 1,

1
1

he = hhy —2h = Lh% — 3h;

and we get the relation

hhe = 1h* — 387 = A2,

that is

h* = 16h%.

We see then that the quantum cohomology ring is generated by & and
classes p(y) with defining relations

(A]
[AB]

[BD1]
[BD2]

(D]

[DFK]
[DK]
[Ds]
[F]
(FM]
[FS]
[GH]
[GL]
(KM]
[KMa]

(L]

h* = 16h%, hu(7) = 0, p(71)p(12) = (11.72)(3h° — 4h).
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The Horrocks-Mumford Bundle
Klaus Hulek

This is a survey article on the Horrocks-Mumford bundle and its geometry.
Since its discovery in 1972 this bundle has attracted the interest of several
algebraic geometers (see e.g.[BHM1], [BHM2], [BM], [DS1], [DS2], [HL2],
[HV], [HKWZ2], [K], [Sal], [Sch], [Su2]). It is my point of view that we now
understand the geometry of this bundle quite well (of course this does not
mean that other interesting and surprising facts might not be discovered in
the future). In any case the knowledge of the geometry of the Horrocks-
Mumford bundle has already proved useful in other contexts, see e.g. the
article by Decker and Popescu in this volume.

I would like to thank the organizers of the Durham symposium on Vector
Bundles in Algebraic Geometry for organizing this meeting and for giving
me the opportunity to speak about the Horrocks-Mumford bundle. I also
lectured on the Horrocks-Mumford bundle during a stay at Tokyo Metropoli-
tain University in March 1993. I would like to take this opportunity to thank
Professor N. Sasakura for inviting me to Tokyo. This article is based on both
my lectures in Tokyo and my talks in Durham.

I am grateful to the Deutsche Forschungsgemeinschaft for partial support
over the last few years in the framework of the Schwerpunktprogramm "Kom-
plexe Mannigfaltigkeiten”.

Throughout this paper I shall work over the complex numbers C.

I Vector bundles on P,

In order to put the Horrocks-Mumford bundle into perspective, I first want
to recall some known results about the existence of vector bundles on P,,.

1 The projective line P,
Here the situation is completely described by Grothendieck’s theorem.

Theorem 1.1 Every algebraic vector bundle E on Py is a sum of line bun-
dles:
E= Opl(al) D...0 Opl(a,.).

The integers a; are uniquely determined up to permutation.

Proof. [OSS, theorem 2.1.1] O
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2 The projective plane P,
Topological C*-bundles over P, were classified by Wu:

Theorem 2.1 There is a bijection between the isomorphism classes of topo-
logical C?-bundles on P, and Z? given by associating to each vector bundle E
its Chern classes (c1(E), c2(E)).

Proof. For a proof see [Th]. O

It is natural to ask whether these bundles carry a holomorphic, or an alge-
braic structure. (By GAGA these two questions are equivalent). A positive
answer was given by Schwarzenberger.

Theorem 2.2 ([Sw]) Every topological C?-bundle on P, and hence every
complez topological vector bundle on Py admits an algebraic structure.

Proof. [Sw] O

An immediate consequence of this result is the existence of many indecom-
posable rank 2 bundles on P,.

3 Projective space P3

Here the situation is similar to P,. The topological C2-bundles were classified
by Atiyah and Rees who also proved the following

Theorem 3.1 ([AR]) Every topological C?-bundle on P3 admits an algebraic
structure.

Proof. [AR] O
This was generalized by Vogelaar to higher rank.

Theorem 3.2 ([Vo]) Every topological C*-bundle on P3, and hence every
complez topological bundle on Ps, carries at least one algebraic structure.

Proof. [Vo| O

4 Higher dimensional projective spaces P,, n > 5

If the characteristic of the base field is different from 2, then no indecom-
posable rank 2 bundles on P,, n > 5 are known. (Horrocks constructed one
indecomposable rank 2 bundle on Ps in characteristic 2).

There are two conjectures concerning the non-existence of rank 2 bundles
onP,, n>4:
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Conjecture 1 (Grauert-Schneider) Every unstable rank 2 bundle on P,
n > 4, is the sum of two line bundles.

Conjecture 2 (Hartshorne) Every rank 2 vector bundle on P,, n > 6,
splits.

The latter conjecture was originally formulated in terms of complete inter-
sections. We shall return to this later.

5 Projective 4-space P,

Here one knows essentially one indecomposable rank 2 bundle, namely the
Horrocks-Mumford bundle F constructed by Horrocks and Mumford in 1972
[HM]. We shall always normalize F' such that

a(F)=15, c(F)=10.
Clearly F is indecomposable, since
c(F) =1+ 5h + 10h* € Z[h]

is irreducible over Z. In fact more is true, namely F is stable, since the twisted
bundle F(—1) has no sections.

Given F one can form its "satellites” F(k) = F®Op,(k), and n*F (k) where
7 : Py — P, is a finite branched covering. All these bundles are stable, and
in particular also indecomposable. No other indecomposable rank 2 bundles
on P, are known.

II Construction methods for the Horrocks-
Mumford bundle

Meanwhile one knows several methods to construct the Horrocks-Mumford

bundle.

1 The monad construction
Monads were first introduced by Horrocks. A monad is a complex
(M) AL B L0

of vector bundles, such that
(1) p is an injective bundle map
(il) ¢ is surjective.

Then the cohomology of (M)

E =kerq/imp
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is again a vector bundle. The idea is to use simple bundles A, B and C and
to define suitable maps p and ¢ in order to construct a new vector bundle E.
To construct the Horrocks-Mumford bundle using a monad we fix a vector
space

v=C

and denote its standard basis by e;, i € Z5 where we use cyclic notation for
the indices. The Koszul complex on Py = P(V) reads

0— O(-1) VR0 L5 AVR0(1) 25 A Ve O©2) 25
L5 AV @ O(3) — O(4) — 0,

where
AV @ 0O(1) AV @ O(2)
- o
(A’T)(-1)
0" ™~

The crucial ingredient is the following pair of maps found by Horrocks and
Mumford

ff o V— A, [t (Z v;e,-) = Zv,-e,q.z A €iy3
fmrV— A2V, I (Z v,-e,-) = Zv,-e,-ﬂ A €iya.

Using these maps one can define

p Ve o) Y oty @ 0(2) Y oarr
¢ : 20T 29 20%y @ 0(3) TP v g 0(3).
It is elementary to check that q o p = 0, and hence one obtains a monad
VeOo@2) 5 2AT L v R 0(3).

Its cohomology
F =kerq/imp

is the Horrocks-Mumford bundle. Clearly F is a rank 2 bundle and its Chern
polynomial is
¢(F)=1+5h + 10h%.

Since this polynomial is irreducible over Z, the bundle F is indecomposable.
Moreover one can deduce from the monad that F(—1) has no sections, and
this shows that F is in fact stable.

This is how Horrocks and Mumford constructed the bundle in [HM].
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2 Serre construction

The idea of the Serre construction is to associate to a 2-codimensional sub-
variety Y of a variety X a rank 2 bundle E on X together with a section s
which vanishes along Y. This construction goes back to Serre in the local
case [Se] and was rediscovered by several authors [Ho|, [BV], [Hal], [GM].
When X is a projective space this result can be formulated as follows.

Theorem 2.1 Let Y be a 2-codimensional subvariety of P,, n > 3. IfY is
a locally complete intersection and wy = Oy(l) for some | € Z, then there
ezists a rank 2 vector bundle E on P, together with a section s such that
Y = {s = 0}. The Chern classes of E are given by c;(E) =1+ n +1 and
c2(E) = deg?.

Proof. E.g. [0SS, theorem 5.1.1]. O

A well known result of Barth’s says that the canonical bundle of any 2-
codimensional submanifold ¥ C P,, n > 6 is induced, i.e. of the form
wy = Oy(l). Hence via the Serre correspondence conjecture 1 is equivalent
to

Conjecture 3 (Hartshorne) Every codimension-2 submanifold Y C P,
n > 6 is a complete intersection.

In order to construct a rank 2 bundle on P, one has to look for a subcanon-
ical surface in P,. The natural idea is to look for smooth surfaces ¥ in P,
with trivial canonical bundle. The double point formula says that

d* =10d + 5HK + K* — ¢(Y)

where d is the degree, H the hyperplane class, K the canonical class and
e(Y) the Euler number of Y. Hence the only possibilities are K 3-surfaces
of degree 4 or 6 and abelian surfaces of degree 10. The K3-surfaces are
complete intersections and hence lead to decomposable bundles. Therefore,
one is led to ask whether smooth abelian surfaces of degree 10 exist in P,.
Indeed, Horrocks and Mumford first convinced themselves of the existence of
such surfaces and then found the monad using the symmetries which such a
surface would necessarily possess.

In fact the first to prove the existence of abelian surfaces in P, was Comes-
satti in 1916 [Com]. He considered a 2-dimensional family of abelian surfaces
which are special in the sense that they have real multiplication in Q(v/5).
In 1985 Ramanan [R] gave a criterion for most abelian surfaces with a (1, 5)-
polarization determining whether they could be embedded in P4. The remain-
ing cases were treated in [HL1]. Now it is an easy consequence of Reider’s
theorem to conclude the existence of abelian surfaces in P,.
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Theorem 2.2 ([Re]) Let S be a smooth projective surface. Assume D is a
divisor on S which is big and nef. Moreover assume D > 9. If |D + K| is
not very ample, then there exists an effective divisor E which fulfills one of
the following properties:

(i) DE =0, E? = -1 or -2,

(i) DE=1, E*=0 or —1,

(iii) DE =2, E* =0,

(iv) E* =1, D = 3E (and hence D* =9).

Proof. [Re] O
From this one easily obtains
Corollary 2.3 There ezist smooth abelian surfaces of degree 10 in P,.

Proof. Let Y be an abelian surface which is not isogenous to a product of
elliptic curves and which has a polarization H of type (1,5). Then H? = 10
and H is ample. If H were not very ample, it follows from Reider’s theorem
that there exists an effective divisor E C X with E? < 0. Since there are no
curves on an abelian surface with negative self-intersection number, one finds
E? = 0. But this implies that every component of E is an elliptic curve, and
hence that Y is isogenous to a product of elliptic curves. O

Remarks 2.4 (i) One can use Reider’s method to characterize all polarized
abelian surfaces which can be embedded in P4, and this gives another proof of
the results of [R] and [HL1]. For details see [LB, chapter 10].

(ii) It was already shown by Horrocks and Mumford [HM] that all abelian
surfaces in P, lead to the same bundle F (up to a change of coordinates).
(iti) One can also use degenerations of abelian surfaces to construct the
Horrocks-Mumford bundle. This was done in [HV] for multiplicity-2 struc-
tures on elliptic ruled surfaces. See also [Hul2].

3 Sasakura’s construction

Sasakura gave a stratification theoretic construction of the Horrocks-Mumford
bundle which also leads to further interesting reflexive rank 2 sheaves on
higher dimensional projective spaces (see [Sal], [Sa2], [Sa3], [SEK1], [SEK2]).
In order to describe his construction consider the following sets in Py:

X! ={z:=0},i€Zsz X' =\JX/

Xi=XinX; (i #7); X =Ux3.
Moreover let i )

P=P,\ X3 X' = X'\ X2
Then ) )
P=(P,\ X" UuX
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Choose open neighbourhoods N; of X! = X!\ X? in P, (in the complex
topology) such that N; N N; = 0 for i # 7 and let N = UN;. Then

P=(P*\ X')UN.

Every matrix
A € GL(2,0p 11)

d_eﬁnes a rank 2 vector bundle E on P = P4\ X? together with frames ey of
Elpax: and e; of E|x such that

eg = €A on N\Xl.

In order to obtain the Horrocks-Mumford bundle Sasakura considers the in-
vertible matrix A defined by
Aly, = 1 —2i42%i43/Zi41%i44
i 0 zi[Tin '

Proposition 3.1 Let i : P — P, be the inclusion. Then i,E is a rank 2
vector bundle on P,. It is isomorphic to the Horrocks-Mumford bundle.

Proof. [Sal], [Sa2]. O

Remark 3.2 (i) The idea of Sasakura’s construction is to generalize the clas-
sical notion of matriz divisor on a Riemann surface (cf [Tj], [We]) to higher
dimensions.

(ii) One can also use this method to obtain explicit transition matrices for the
Horrocks-Mumford bundle [Sa2], [Sa3].

(iii) The matriz A is closely related to the maps f+ and f~ which were the
crucial ingredient in the Horrocks-Mumford monad. Note that f* is obtained
by starting with the pair of indices (1,4) which are the quadratic residues mod
5, whereas f~ arises from the pair (2,3) which are the non quadratic residues
mod 5.

(iv) The above construction can be generalized to give reflexive rank 2 sheaves
E, on P,_,, where p is a prime congruent to I mod 4. For p > 5 the sheaves
E, are singular in codimension 4. Their Chern classes have very interest-
ing arithmetic properties and are related to the number of rational points on
certain K3 surfaces [SEK1], [SEK2].

4 Sumihiro’s construction

For a rank 2 vector bundle E on a curve C'let 7 : P(E) — C be the associated
P,-bundle. If we blow up P(E)in a point z, then the fibre through z becomes
a (—1)-curve. Blowing this down one obtains another P;-bundle P(E’) over
C. In terms of vector bundles this process can be described as follows: let
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E(z) be the geometric fibre of the vector bundle E over z. Then the point z
corresponds to a projection ¢, : Ex;y — C. We obtain an exact sequence

0—>E'—>E—>C,.-(z)—>0

where the last map is restriction to Ey(,) followed by the projection ¢.. The
kernel E’ is locally free of rank 2. This is the simplest example of an elemen-
tary transformation of a vector bundle. Such elementary transformations were
studied by Maruyama [Mal], [Ma2] who showed that every vector bundle can
be obtained from the trivial bundle (up to tensoring with line bundles) by his
elementary transformations, provided the dimension of the base space is at
most 3. In order to remove this restriction Sumihiro generalized Maruyama’s
concept of elementary transformations of vector bundles in [Sul], [Su2]. As a
consequence of his theory he obtains the following result: let X be a noethe-
rian scheme, Z a normal Cartier divisor on X, and let |IW| be a linear system
of dimension r — 1 of effective Weil divisors on Z. Then there exists a rank
r vector bundle F on X together with sections s;,... ,s, of E such that the
divisors W; = Z(s1 A... A8 A...As,),1 <i<r,on Z span |W|. This can
also be viewed as a generalization of the Serre construction (cf. also [Vol).

In order to reconstruct the Horrocks-Mumford bundle, Sumihiro considers
X = P4, and takes Z to be the quintic hypersurface

Z= {27(5) + 27? + 27; + $§ + 2:2 — 52021222324 = 0}.

This quintic hypersurface has 125 nodes. It was first studied by Schoen [Sch],
who also noticed a connection with the Horrocks-Mumford bundle (for this
see also [Sch]). The quintic Z contains the smooth quadric surface

S:{O'l=0'2=0}

where o; is the i-th elementary symmetric polynomial in the coordinates z.
Let 7 be the transformation of P4 given by e; + e¥e, where € = €2™/5 (see
section III.1 below). Then
W= ()
i€Zs

is a union of five quadrics contained in Z. In this way one obtains a 1-
dimensional linear system |W| on Z whose general element is an abelian sur-
face with real multiplication in Q(v/5) (see [Sch]). Applying his construction
to the pair (Z, |W|) Sumihiro was able to reconstruct the Horrocks-Mumford
bundle. This also shows that the Horrocks-Mumford bundle has a section
vanishing on a union of five quadrics. This was first noticed in [HM]. We
shall return to this later, see e.g. theorem IV.5.1 below.

IIT First geometric properties of F

The original paper by Horrocks and Mumford [HM] has the title ”A vector
bundle with 15,000 symmetries”. We shall first describe the symmetry goup of
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F, and then discuss "jumping phenomena”. This leads to results concerning
the uniqueness and the non-extendability of F.

1 The symmetry group
Consider the following linear transformations on V:
(L.1) oe;— e
T e — Ele (e = e2™/®),
Then o and 7 are of order 5. Their commutator is
[o,7] = €idv .

The subgroup
H; = (o,7) C SL(5,C)

of SL(5,C) generated by o and 7 is the Heisenberg group of level 5. The
representation given by the inclusion Hs C SL(5,C) is called the Schrédinger
representation. The group Hs is a central extension
1—)#5={€i;i€Z5} — H5 — Z5XZ5—)1
&£ — Eidv

o — (1,0)

T +— (0,1).
The image of Hs in PSL(5,C) is isomorphic to Zs x Zs. In fact Hj is the
extension of Zs X Zs which lifts the projective representation of Zs x Zs in

PSL(5,C) defined by (1.1) to a linear representation.
Let N5 be the normalizer of Hs in SL(5,C). It was shown in [HM] that

Ns/Hs = SL(2,Zs).
In fact Nj is a semi-direct product

Ns = Hs x SL(2,Zs)
and hence the order of Nj is

|Ns| = |Hs| -

SL(2,Zs)| = 125 - 120 = 15,000.
Proposition 1.1 The action of N5 on P, lifts to an action on the bundle F.
Proof. [HM] O

Remarks 1.2 (i) Decker [Del] has shown that Nj is in fact the full symmetry
group of F.

(ii) Both the Heisenberg group Hs and the group Ns are closely related to the
symmetries of abelian surfaces in Py. We shall return to this in section V.2
below.
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We finally note the element ¢ € N5 given by
(L.2) L:e; — e_;.
The involution ¢ decomposes V into eigenspaces

V=vteVv"-

where
VY = (eg, &1 + €a, €2 + €3), V™ = (e1— eq,e2 — e3).

We set
PT =P(V7), P} =P(V*).

2 Jumping phenomena

The method of studying vector bundles on projective spaces by considering
their restriction to all the lines in this projective space was first introduced
by Van de Ven [V]. Since F is a stable bundle the theorem of Grauert and
Miilich implies that

Flr=01(2)® 0L(3)

for a general line L in P4. This leads naturally to the
Definition A line L in P, is called @ jumping line of F' of order a > 1 if
Flr =012 —a)® OL(3 + a).
We define
J(F) = {L € Gr(1,4) ; L is a jumping line of order > i}.

Clearly
JA(F) c J}(F) c JY(F)

and by semi-continuity these are closed subvarieties of the Grassmannian
Gr(1,4). The varieties of jumping lines and jumping planes were studied by
Barth, Moore and the author in [BHM1]. Here we became aware of the close
connection between the Shioda modular surface of level 5 and the Horrocks-
Mumford bundle. I shall return to the Shioda modular surface S(5) in more
detail in section IV.3.

Theorem 2.1 ((BHM1]) F has jumping lines of order a = 1,2 and 3.
Moreover the following holds:

(i) JX(F) is a rational 4-fold. Its singular locus is the set J(F).

(ii) J*(F) is a surface. It is the Shioda modular surface S(5) with the 25
sections contracted to Ay-singularities. Its singular locus is the set J3(F).
(iii) J3(F) consists of 25 points. The 25 jumping lines of order 3 are the lines
L;; = o'ti(PY), (4,7) € Zs x Zs.
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Proof. [BHM1, theorem 2] O

It has also proved useful to study jumping planes as well as jumping lines.

Definition A plane E in P, is called a jumping plane of F if F|g is unstable.
We set

S(F):={E € Gr(2,4) ; F is a jumping plane of F'}.

Proposition 2.2 ([BHM1]) The jumping planes of F are parametrized by
a smooth surface S(F) which is isomorphic to Shioda’s modular surface S(5).

Proof. Using the monad one can show that
S(F) = GI’(2,4) N (P] X ]P4) C ]Pg

where the Grassmannian is embedded in Py by the Pliicker embedding, and
where P; X P, is embedded by a suitably normalized Segre map. It is then not
difficult to identify this intersection with S(5). For details see [Hul2]. O

At this point it is appropriate to mention the following uniqueness result
due to Decker and Schreyer.

Theorem 2.3 ([DS1]) Every stable rank 2 bundle F on P, with Chern clas-
ses ¢1(F) = 5 and co(F') = 10 is, up to possibly a change of coordinates,
isomorphic to the Horrocks-Mumford bundle F.

Proof. The idea of Decker and Schreyer is to analyse the variety S(F~‘) of
jumping planes of F', and to show that S(F') is isomorphic to 5(5). It is then
not too difficult to show that F is isomorphic to F. Details can be found in

[DS1] and [De2]. O

Remark 2.4 The restriction of F to any projective 3-space in P4 is stable,
i.e. F has no jumping 3-spaces.
Let Mp,(5,10) be the moduli space of stable rank 2 vector bundles on P,

with ¢; = 5 and c; = 10. Then the above theorem implies the following
description of this moduli space:

Corollary 2.5 Mp,(5,10) = PGL(5,C)/((Zs x Zs) x SL(2,Zs)).

Remark 2.6 In [DS2] Decker and Schreyer studied pullbacks ¢*F of F via
finite maps Py — P4. They showed that every small deformation of ©*F
arises from a deformation of .

The above ideas can also be used to prove the following theorem originally
due to W. Decker
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Theorem 2.7 ([De2]|) There exists no stable rank 2 bundle on Ps with Chern
classes ¢y = 5 and c; = 10. In particular, the Horrocks-Mumford bundle
cannot be extended to Ps.

Proof. Originally Decker [De2] proved this result by studying possible monads
of such a bundle on Ps. Ellingsrud and Strgmme gave the following beautiful
proof: consider a finite morphism of bidegree (1,1)

WI]P4X]P1—)]P5

and set

F=nF
where F' is a stable rank 2 bundle on Ps with ¢, = 5, c2 = 10. Using the

uniqueness result of Decker and Schreyer and remark 2.4 one shows that F|p,
is stable for all P, C P5. Hence we obtain a morphism

.{Pl — MP,(E),IO)
|t — Flpxqy

A simple Chern class calculation proves that ¢ cannot be constant. But then
using corollary 2.5 one can lift this map to a non-constant morphism

¢ : P — PGL(5,C).
Since PGL(5,C) is affine, this is a contradiction. O
Remark 2.8 There are three different topological C? -bundles on Ps with Chern

classes ¢y = 5 and c; = 10.

IV Classification of HM-surfaces

In this section I want to describe the classification of Horrocks-Mumford
surfaces.

1 HM-surfaces

For every non-zero section s € I'(F') we can consider the zero set
X, ={s=0}.
Since h°(F(—1)) = 0 it follows that X, is a surface of degree
deg X, = co(F) = 10.

Definition The surfaces X, are called HM (Horrocks-Mumford) -surfaces.
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Two sections define the same HM-surface if and only if they differ by a
non-zero scalar constant. Since h°(F) = 4 the HM-surfaces are parametrized
by the 3-dimensional projective space

PT = P(I'(F)).

Proposition 1.1 ([HM]) (i) The general HM-surface is smooth.
(i1) Every smooth HM-surface is abelian.

Proof. (i) is clear if one constructs F' via the Serre construction from an
abelian surface. If one constructs F' via a monad, then one can show that F
is globally generated outside the 25 jumping lines L;; of order 3. A calculation
in local coordinates then shows that a general HM-surface is also smooth near
these lines [HM].

(i1) It follows from the exact sequence
0 — 0> F—1Ix(5—0

that

wx, = OX’.
Hence X, is abelian or K3. One can now either use the double point formula
to show that X is abelian or use the fact that

C2(X5) = C2(TXG) =0.

2 Elliptic curves

Before we can describe the classification of singular HM-surfaces it is neces-
sary to recall some facts about elliptic curves. Here we shall restrict ourselves
to elliptic normal curves of degree 5 in P,, but this discussion goes through
essentially unchanged for arbitrary degree n > 3.

For an elliptic curve E we can consider the group E®) of 5-torsion points,
As an abstract group E® is isomorphic to Zs x Zs. There is, however, no
canonical isomorphism between these groups. On the other hand E(®) carries
an intrinsically defined, non-degenerate, alternating form

u® . E® x EG) — 7
the so-called Weil pairing.

Definition A level-5 structure on E is a symplectic basis of E®), ie. a
basis a,b with pG®)(a,b) = 1.
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Remark 2.1 Alternatively one can define a level-5 structure as a symplectic
isomorphism
a: E® — Zyx Zs

where E®) carries the Weil pairing and Zsx Zs carries the standard symplectic
form.

Let O be the origin of E. We consider the line bundle
L= OE(50).
Let
) E — PidE
1z — LIRTIL

where T, denotes translation by z. Then

E® = ker .
Le.
=L
if and only if z € E®). Moreover L is symmetric, i.e. if
JE — FE
Vo — —2

is the standard involution on E, then
JL=L.
Now fix a level-5 structure a : E® — Zg x Zs. This defines an isomorphism
(2.3) E® 5 () =5 (Zs x Zs) x L.
Recall that we have an exact sequence
1 — ps = {e'idy} — Hs X Zy — (Zs X Zs) X Zy — 0.

Proposition 2.2 Let a be a level 5-structure on E. Then the action of
E® x () lifts via the isomorphism (2.3) to an action of Hs x Zy on the
bundle L. This lifting is unique, provided ¢ acts on the fibre of L over the
origin by +1.

Proof. This is a special case of a much more general fact which is true for

polarized abelian varieties, see [LB, theorem 6.9.5]. O

Recall that by IIL.(1.1) the group Hs x Z; also acts on V, and hence on P,
and O(1).



HULEK: The Horrocks-Mumford bundle 153

Proposition 2.3 Given a level-5 structure on E there ezists an (up to a
common scalar) unique basis so,... ,54 of (L) such that the embedding

tp|c|:{E — Pi=P(V)

z — (so(2):...:84(2))
is equivariant with respect to the action of HsxZy on (E, L) and on (P, O(1)).
Proof. [BHM1, proposition 4] O

Remark 2.4 The above proposition describes in fact a bijection between el-
liptic curves with a level-5 structure and Hs X Zg-invariant elliptic normal
curves in Py.

3 Modular curves and Shioda modular surfaces

Again [ shall restrict myself to the level-5 case, although most of what follows
carries over immediately to the level-n case.
Recall the upper half plane

S1={reC; Im7 > 0}.

The modular group
I' =SL(2,Z)

acts on 51 by

a b at +b
(3.49) (c d) .Tv—>c7_+d.

By associating to each point 7 € 57 the elliptic curve

one obtains a bijection between the set S;/I' and the set of isomorphism
classes of elliptic curves. The j-function defines an isomorphism of Riemann
surfaces

The principal congruence subgroup of level 5 is defined as

['(5):= {y€SL(2,Z); vy =1 mod 5}.

As a subgroup of I' it also acts on S and the quotient S;/I'(5) parametrizes
elliptic curves with a level-5 structure: to each point 7 € S one associates
the elliptic curve E, together with the symplectic basis [r/5],[1/5] € E;.
Clearly Xp(1) = S$1/I' can be compactified to P,. Intrinsically this can be
done by setting
X(1) = (S1uQU {ico})/T
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and defining a suitable complex structure on this quotient. The points in
Q U {ico} form one orbit under I', and this means that one has to add one
cusp oo to 51/T" to obtain the modular curve X(1) of level 1. Similarly one
can compactify X°(5) = $1/I'(5) by

X(5) = (81 UQU {ico})/T(5).

In this case one has to add 12 cusps. The modular curve X(5) of level 5 is
rational. (Note that the modular curves X (n) of level n are no longer rational
ifn > 6).
The group
/(£(5)) = PSL(2, Zs) = As

acts in a natural way on X(5). If one identifies X(5) with Py, resp. via
stereographic projection with 52 this becomes the action of the icosahedral
group as a subgroup of SO(3) on S2. The 12 cusps can then be interpreted as
the vertices of an icosahedron inscribed in S2. The group As acts transitively
on the cusps which, under the quotient map, are mapped to the unique cusp
in X(1).

There exists a universal elliptic curve 7 : $%(5) — X°(5) (this is true for
all levels n > 3). Shioda’s modular surface S(5) of level 5 compactifies this
universal family, i.e. there is a commutative diagram

5%5) c  S(5)
X°5) C X(5).

S(5) is a smooth projective surface. The fibres over the 12 cusps are pentagons
of rational (—2)-curves:

S(5) has 25 sections. In the smooth fibres these are exactly the 5-torsion
points. The sections have self-intersection number —5 (cf. theorem IIL.2.1).
Also note that the involution which acts by z +— —z on the fibres of 5°(5)
extends to an involution ¢ on S(5). We call the quotient

K(5) = 5(5)/{x)
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the Kummer modular surface of level 5. The singular fibres over the cusps
look as follows:

4 Elliptic normal curves in P,

Let E C P, be an elliptic normal quintic curve which is (Hs xZ,)-equivariantly
embedded. It is well known that E lies on 5 independent quadrics, and that
these quadrics describe E scheme-theoretically. As an Hs-module

[(Op,(2)=VooVio V)

where
/a2 .2 .2 .2 .2
VD - <$0,$1,$2,$3,$4)
Vi = (2124, 2220, 2371, T4Z2, ToZ3)
Voo = (2223, 2324, 2420, ToZ1, T122).

Hence any Hjs-invariant 5-dimensional space of quadrics is spanned by ele-
ments
Qi(a,b,¢) = aziyatiss + b2l + cripazipa, 1 € Ls.

The intersection of 5 such quadrics is non-empty if and only if
(@a:b:e)=(N:hp:—p?)
for some (A : p) € P;. Hence we are led to systems of quadrics
Qi(\ 1) = Noppazips + Mpzl — Pl ziga, i € Zs.

We define
E():p) = (N{Q:i\p) =0}
i€Zs
The set
A = {0,00,ek(e? + €%),e¥(e + &%) ; k € Zs}

consists of 12 points. As a subset of P! = 52 it can be identified with the 12
vertices of an icosahedron inscribed in the sphere S2.
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Proposition 4.1 (i) If (A: p) € A, then E() : p) is a smooth elliptic quintic
curve.

(i) If (A : ) € A, then E(X: p) is a pentagon of lines.

Proof. [BHM1, propositions 3 and 6] O

Next we define the surface

515 = U E(/\ : ,U,)

(Aep)€Py

It contains all Heisenberg-invariant elliptic curves as well as 12 singular curves.

Proposition 4.2 ((BHM1]) (i) Si5 is a surface of degree 15. It is smooth
outside 30 points where two smooth branches meet transversally.

(ii) There is a surjective morphism S(5) — Sis, which is an immersion into
P,4. The only identifications which occur arise from singular fibres over oppo-
site vertices of the icosahedron A which together form a complete pentagon.

Proof. [BHM1, proposition 10] O

Remark 4.3 (i) The map S(5) — S15 was also discussed in [BH].
(i) A pair of opposite vertices is given by 0,00 € A. There the situation is
as follows:

€2 €3

The dotted pentagon is the curve E(0 : 1), and the fully drawn pentagon is
the curve E(1 : 0).

5 Description of HM-surfaces
The classification of HM-surfaces is given by
Theorem 5.1 ((BHMZ2]) Every HM-surface is one of the following:

(i) @ smooth abelian surface
(i1) a translation scroll of an elliptic normal quintic curve
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(iii) @ tangent scroll of an elliptic normal quintic curve
(iv) an elliptic quintic scroll with a double structure
(v) a union of five quadrics

(vi) e union of five planes with a double structure.

Before giving an outline of the proof of this theorem, I would like to com-
ment on these surfaces. Let E C P4 be an elliptic quintic curve. Consider a
point Py € E which is not a 2-torion point, i.e. 2F; # 0. For every point P
we consider the secant line L(P, P + Fp) joining P and F,. Then the union
of these secant lines

X(E,P)= |J L(P,P + Py)
PeE

is called the translation scroll defined by the pair (E, Fp).
P

P+Py

P-Fy

X(E, Py) is a singular surface of degree 10. Its singular locus is exactly the
curve E. The translation scrolls which occur in (ii) are precisely those which
are obtained from the smooth elliptic curves E(A : g), (A : 4) € A.

If Py goes to O, then the translation scroll X(E, Py) becomes the tangent
scroll of E. Again this is a degree 10 surface, singular along E, where Tan F
has a cuspidal edge. If P, becomes a non-zero 2-torsion point, then set-
theoretically X (E, Py) is a quintic elliptic scroll. As an HM-surface it carries
a multiplicity-2 structure. For a discussion of this multiplicity-2 structure see
the article [HV].

The other degenerations arise from degenerations of the quintic elliptic
curve E() : p) to a pentagon. Let us consider the situation where the two
pentagons belonging to the vertices 0,00 € A come together to form the
complete pentagon given by the coordinate points eg,...,eq € Py (see re-
mark 4.3 above). There is a 1-dimensional family of HM-surfaces containing
this complete pentagon. This family of HM-surfaces was first written down
in [HM]:

(5.5) Xo = U {2 = zi1%i4a + aZigazigs = 0}, achP,
€7y
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For a # 0, co this is a union of 5 quadrics whose singular locus is the complete
pentagon defined by eg,...,es. For @ = 0 or 0o one obtains 5 planes with
a multiplicity-2 structure. A union of five quadrics or five planes can also
be interpreted as a translation scroll if one interprets the smooth part of a

pentagon as C* x Zs.
The hierarchy of degenerations is as follows:

tangent scrolls
translation scrolls Z— double quintic scrolls — unions of 5 planes
unions of 5 quadrics /

Outline of the proof of theorem 5.1: This theorem was proved in [BHM2].
Step 1: We consider the following matrix which was found by R. Moore:

3 2, .2
Ty ToTi1Ta ToZaZz 123 + 2lzy 2lz3 + 7,22
z3 ..

3 2 2 2 2
Ty TaToT3 T4T1Z2 ZoZ) + TaT3 TpTz + 2173

Its determinant is a non-zero form of degree 15. In fact it is the unique
Ns-invariant form of minimal degree. Consider the degree 15 hypersurface

M = {det M(z) = 0}

in P,4. Using the given form of M(2) it is not hard to see that M is the union
of the quintic elliptic scrolls and the unions of 5 planes which are obtained
from the curves E(\ : i), (A: p) € Py.

Step 2: The natural map

AT(F) — T(A%F) = T(Op,(5))
defines an isomorphism
A*T(F) =5 Ty (Op,(5))

where T'yr(Op,(5)) denotes the 6-dimensional space of Heisenberg invariant
quintic forms. Let

g: { Py —-= Ps=P(A'T(F)) = P(Tu(Or,(5)))

r — (8 A8)(2)ic

(here sg,...,ss is a basis of I'(F)) be the rational map associated to the
linear system of Heisenberg invariant quintics. Since the scheme-theoretic
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intersection of these quintics is the union of the 25 lines L;; = o'T/P7, we
obtain a commutative diagram

P, - eeeeeen P(A(F))

where 7 : P, — P, is the blow-up of P4 along the lines L;;. Let D be the
ramification locus of §. Since two general HM-surfaces intersect in 100 points,
the map § is generically 100 : 1. One can also show that

n(D) =M.

Using the construction of the map ¢, resp. §, one can then prove that M is
the union of the singular loci of all HM-surfaces.

Step 3: Let z be a singular point of an HM-surface X,. Then z € M and
there are two cases:

(1) = € S15. In this case there exists a P, of HM-surfaces which are all singular
at z. If z is on a smooth elliptic curve E() : p), (A : ) € A, then this Py is
the family of HM-surfaces which is obtained by varying the point Fp in the
construction of the tangent scroll X(E, Fy). If z is on a singular curve, then
PP, is, up to the action of N5, the pencil of unions of 5 quadrics given by (5.5).
(ii) & Sis. In this case there are at most two HM-surfaces which are singular
at z. It turns out that they are either a quintic elliptic scroll or an union of
5 planes with a double structure.

Step 3 requires a careful geometric analysis. O

V The Horrocks-Mumford bundle and abe-
lian surfaces

In this section I want to describe the relation between the Horrocks-Mumford
bundle and moduli of abelian surfaces.

1 Moduli of abelian surfaces
Every compact 2-dimensional complex torus is of the form
A=C/L

where L is arank 4 lattice in C2. A Riemann form with respect to L is a semi-
positive definite Hermitian form H whose imaginary part is integer-valued on
L. Then

H=ImH):LQL—Z
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is an alternating form. The complex torus A is an abelian surface (i.e. a
projective variety) if and only if there exists a positive-definite Riemann form
with respect to L. In this case H' is, with respect to a suitable basis of L, of
the form

where d; and d; are positive integers with d;|d2. The form H is then called
a polarization of type (di,dz). If (d1,d2) = (1,1) one also calls H a principal
polarization. Principally polarized abelian surfaces have been studied the
most. They are either Jacobians of genus 2 curves or products of elliptic
curves.

In order to construct moduli spaces of abelian surfaces we consider Siegel
space of degree 2:

S, ={reMat(2x2,C); 7 =*r,Imr > 0}.

To every T € S, one can associate a period matrix

r
()
_[(dr O
E= (0 d2> .
Let L, be the lattice spanned by the rows of the period matrix §2,. Then
A, =CY/L,

where

carries a (di,d,)-polarization given by
H(z,y)=z(Im7) .

Every (di,d;)-polarized abelian surface arises in this way. In order to con-
struct the moduli space of (d;, d2)-polarized abelian surfaces we have to con-
sider the group

Sp(A,Z)= {g € GL(4,Z); gA'g = A}.
This group acts on S; by

(? g) .7+ (A + BE)(Cr + DE)~'E.

Here A, B,C and D are 2 X 2-blocks. (Note that this generalizes the action
of Sp(2,Z) = SL(2,Z) on the usual upper half plane.) Then

A(dy, dy) = S2/ Sp(A, Z)
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is the moduli space of (dy, d,)-polarized abelian surfaces.

In connection with the Horrocks-Mumford bundle we are interested in
abelian surfaces of degree 10 in P,. The hyperplane section is then a po-
larization of type (1,5). I shall therefore now concentrate on abelian surfaces
with a (1, p)-polarization where p is a prime greater than or equal to 5. Let
H be a (1, p)-polarization on an abelian surface A, and let £ be a line bundle
on A representing H. The map

A_{ A — A=PilA
Mz — TXRLT!

is independent of the choice of £. Since H is a polarization of type (1, p)
the kernel of A is (non-canonically) isomorphic to Z, x Z,. The group ker A
carries an intrinsically defined alternating form given by the Weil pairing.

Definition A level structure (of canonical type) is ¢ symplectic isomor-
phism a : ker A\ — Z, X Z,,, where Z, X Z, carries the standard form.

We can now consider the moduli problem of abelian surfaces with a (1, p)-
polarization and a (canonical) level structure. For the lattice L we define the
dual lattice with respect to H by

LY={yeL®zR; ImH(z,y) € Zforall z € L}.
If L =Z*and Im H is given by A with d, = 1 and d; = p, then
I'=20'z2020 2.
p p
It is easy to see [HKW2, 1.1] that the above moduli problem leads to the
following subgroup of Sp(A,Z):
IN,={9€Sp(A,Z); vg=v mod L for all v € LY}.

In other words the space

A(l,p) = S2/Thy

is the moduli space of (1, p)-polarized abelian surfaces with a (canonical) level

structure.
Since we are particulary interested in abelian surfaces which are embedded
in P4, we want to consider the following open part of the moduli space A(1, p):

A%1,p) = {(A, H,a) € A(l,p) ; H is very ample}.

One can describe this variety more precisely. For this let

{T=(:: ::)ESz, T2=0}

Hz = {TZ(:: ::)eSQ;T2=p/2}.

Ha
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The images
H,-=7r('H,-), i=1,2

under the quotient map = : S — A(l,p) are closed surfaces. They are
examples of Humbert surfaces [HKW2].

Proposition 1.1 A%1,p) = A(1,p) \ (H1 U H,).

Proof. See [ HW1]. 0O

Remarks 1.2 (i) The polarized abelian surfaces parametrized by points in
H, are products of elliptic curves with a product polarization.

(ii) The surfaces parametrized by points in H, are bielliptic abelian surfaces,
i.e. they are certain covers of Jacobians of bielliptic curves of genus 2.

Finally note that the spaces A(1,p) are 3-dimensional quasi-projective va-
rieties which are singular along 2 curves where we have transversal A,, resp.
transversal C3;-singularities [HKW1].

2 The Horrocks-Mumford map
Recall the 3-dimensional projective space
PI'= P(I'(F))

which parametrizes HM-surfaces X,, s € I['(F'). Every HM-surface is invariant
under the group Hs x {¢). Hence the action of N5 on F induces an action of

As = PSL(2,Zs) = Ns/Hs x (t)
on PT'. Let
PLmooth = {Xs ; X, is a smooth HM-surface}
be the space of smooth HM-surfaces, and
Plaing = {X, ; X, is a singular HM-surface}

be the space of singular HM-surfaces. Clearly Plgmooth is As-invariant.

We have already remarked that the hyperplane section defines a (very am-
ple) polarization of type (1,5) on smooth HM-surfaces X, C P4. Let A(1,5)
be the moduli space of (1,5)-polarized abelian surfaces with a level-structure,
and let A%(1,5) be the open part where the polarization is very ample. The
group

A5 = PSL(2,Z5) = Sp(A,Z)/F1,5
acts on both A(1,5) and A%(1,5). This action leaves the polarization fixed,
but acts transitively on the possible level-structures of a polarized abelian
surface.

The following theorem is due to Horrocks and Mumford.
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Theorem 2.1 ([HM]) There ezists a natural As-equivariant isomorphism
o ! AO(I,S) LV ]P’Fsmooth-

Outline of proof. Consider a point (A4, H,a) € A%1,5) and let £ be a sym-
metric line bundle which represents H. The group ker A x (¢) acts on A. Here
ker X\ acts by translation and ¢ is the involution z — —z. The level-structure
« identifies ker A with Zs x Zs. The action of the group (Zs x Zs) x (¢} on A
lifts to an action of Hs x (¢) on L. Such a lifting is unique if one requires that
¢ acts on the fibre of £ over the origin by +1. There exists a unique basis
S0,- .. ,%4 € ['(A, £) such that the map

. A — ]P4
o { 1 2 eyt

is equivariant with respect to the action of Hs x () on (4, £) and (P4, O(1)).
The image ¢¢|(A) is independent of the choice of the symmetric line bundle £.
Moreover there exists a section 0 # s € I'(F'), which is unique up to a scalar,
such that ¢||(A) = X,. The map o maps (A4, H,a) to X,. Conversely let
X, be a smooth HM-surface. Then Ox,(1) defines a (1, 5)-polarization H on
X,. Choose any point O € X, as origin. Then the pair (¢(0), 7(0O)) defines
a level-structure on (X, H). This defines an inverse map for . Using the
universal property of the moduli space A(1,5) one can show that ¢;' is a
morphism. Then o and ¢! are isomorphisms by Zariski’s main theorem.
For details see [HM, theorem 5.2] and [HKW2, II1.2]. O

Definition ¢y is called the Horrocks-Mumford map.

It is now natural to ask whether g extends to the whole of the moduli space
A(1,5), or to a suitable compactification of A(1,5), and what the relation
between such an extension of g and the degeneration of HM-surfaces is.

3 The Igusa compactification of A(1,p)

In subsection (IV.3) we discussed the compact modular curves
X(n) = ($1UQU {ico})/I'(n)

which arise from the open Riemann surfaces X%(n) by adding finitely many
cusps. In general, the moduli spaces of abelian varieties of dimension g have
dimension ¢g(g + 1)/2. Whenever g > 2 there are several ways to compactify
these spaces. In particular in the case of A4,, the moduli space of principally
polarized abelian varieties of dimension g, this problem has a long history:
The first compactification is due to Satake. The Satake compactification A,
is in some sense the minimal compactification of .4,. The boundary of A,
has dimension g(g — 1)/2, and although 4, is normal, it is highly singular
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along the boundary. The Satake compactification was later generalized by
Baily and Borel to quotients of other bounded symmetric domains. Igusa
constructed a compactification 4} by blowing up the Satake compactifica-
tion along the boundary. The Igusa compactification .A; has at worst finite
quotient singularities. The boundary of A}, however, has codimension 1. The
ideas of Igusa together with work of Hirzebruch on Hilbert modular surfaces
led to Mumford’s very general theory of toroidal compactifications of quo-
tients of bounded symmetric domains. Namikawa then showed that Igusa’s
compactification can be interpreted as a toroidal compactification. Finally
Chai and Faltings constructed compactifications of 4, over the integers.

In a joint book with Kahn and Weintraub [HKW2] we constructed and
described a toroidal compactification A*(1,p) of A(L,p). Since in the case
p = 1 this compactification is the Igusa compactification .4}, we also called
A*(1, p) the Igusa compactification of A(1, p). One has to compactify A(1, p)
at various ”ends”; this corresponds to adding the cusps in the case of modular
curves. These ends are enumerated by the vertices of the Tits-building which
belongs to the group I'y,. In our case the Tits-building is a graph. There are
two types of vertices. These are given by
(i) (A-isotropic) lines ! in Q* (modulo I'y )

(ii) A-isotropic planes h in‘Q* (modulo I' ;).

The edges are given by joining ! and A whenever ! C h. To each vertex [
(resp. h) one can associate the stabilizer subgroup P(l) (resp. P(k)) in I'y,.
In this way one obtains the usual description of the Tits-building in terms of
parabolic subgroups.

Proposition 3.1 ((HKW?2]) The Tits-building of 'y , contains 1+(p*—1)/2
vertices corresponding to lines | and p + 1 vertices corresponding to isotropic
planes h. It looks as follows:

Lo,e51) lane ol

Loy
l(2a,25)

(Here (a,b) € (Z, X Zp\ {(0,0)})/ £ 1 and [a: b] € Py(Z,).)

Proof. [HKW2, theorem 1.3.40) O
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Set-theoretically one obtains the Igusa compactification .A*(1, p) as a disjoint
union

A*(1,p) = A(L,p) [T D) IT (H D(’(u,b>)) II (H E(h[u:b])) -

(a,b) [a:b]

Here D(l) are (open) surfaces and E(h) are unions of projective lines. Of
course the crucial point is that ,A4*(1,p) can be given the structure of a pro-
jective variety. Two vertices / and h are joined by an edge in the Tits-building
if and only if D*(I) N D(k) # 0 where D*(I) denotes the closure of D(!) in
A*(1,p). We call D(I) the corank1 boundary components and E(h) the corank
2 boundary components. We refer to D(lp) also as the central boundary surface
and to the D(l(,5)) as peripheral boundary surfaces.

It would go far beyond the limitation of a survey article to give all technical
details which are necessary to construct A*(1,p). For details see [HKW2]. I
do, however, briefly want to comment on the toroidal nature of this compact-
ification. For this purpose I shall concentrate on the vertex

h = hyay = (0,0,1,0) A (0,0,0,1) C Q*.
The stabilizer P(h) of the A-isotropic plane A in I'y, is an extension
1 — P'(h) — P(h) — P"(h) — 1
where
m n
pn_pk
0o | 1

P'(h) = im,n, k€l

is a lattice of rank 3. The quotient P"(h) is isomorphic to the following
subgroup of GL(2,Z):

G = {Q €SL(2,Z); Q= (: ?) mod p}.
The group P'(h) acts on S; by
T T2 nm+m T2+ pn
[ 4 2 .
T2, Ta T2+ pn T3+ pk
Dividing out by P'(h) gives rise to a partial quotient

52 — Sz/P’(h)C(U)a

n T2 i ; [ 2
( ) (e2m‘r],e21rn'2/p,e2mr3/p )
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Let Sym™(2,R) be the case of positive-definite symmetric real matrices in
Sym(2,R) 2 R® Let 0y C Sym(2,R) be the simplicial cone

10 11 00
7= Ry (0 0>+R2° (1 1>+R2" (0 1)

in Sym*(2,R). The group GL(2,Z) acts naturally on Sym(2,R), leaving
Sym*(2,R) invariant. The Legendre decomposition ¥y, is the collection of
cones in Sym* (2, R) consisting of all GL(2, Z)-translates of oy together with
their respective faces. It is a fan and as such defines a toroidal variety Ts of
dimension 3. Consider

Sy — So/P'(h) C (C*)° C Ts.

The next step is to take the interior points of the closure of S;/P’'(h) in Tx.
Call this set X5s)(h). The situation can be envisaged as follows: Recall that

o= | T..
L%

If o is a 3-dimensional cone then T, = C® and the image of S; in T, is a
neighbourhood of the coordinate axes whose intersection with the coordinate
planes looks roughly as follows:

has to be added to give the
corank 1 boundary components

coordinate axes give rise to P;’s in
the corank 2 boundary component E(h)

Finally the action of P”(h) on S2/ P'(h) extends to an action of P"(h) on Tyx.
The quotient Xy(xy(h)/P"(h) is a neighbourhood of the corank 2 boundary
component E(h) in A*(1,p).

It remains to describe the boundary components geometrically.

Proposition 3.2 (i) The central boundary surface D(lp) is isomorphic to the
open Kummer modular surface K°(p).

(i) The peripheral boundary surfaces D(l(,p)) are isomorphic to the open
Kummer modular surface K°(1).
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Proof. HKW2,1.3] O

Proposition 3.3 The corank 2 boundary components E(h{,4)) are configura-
tions of (p — 1)(p + 5)/8 copies on P,;.

Proof. HKW2,1.4] O

In general these configurations are very complicated. Pictures for p < 37
can be found in [HKW2, 1.4]. For p = 5 the situation is still very simple: we
obtain 5 lines which intersect as follows:

Ro R, R,=R, R, R,
(3.6)

In the terminology of [HKW?2] the lines Ry and Ry are the cp-lines, R; and
R} are the adjacent cc-lines and R; = R;, is the non-adjacent ce-line (here ¢
stands for central and p for peripheral).

Finally we consider the closures D*(I) of the boundary surfaces D(!) in the
compactified moduli space A*(1,p).

Proposition 3.4 (i) The closure D*(l(o3)) of the peripheral boundary surface
D(lapy) is isomorphic to the Kummer modular surface K(1).

(ii) There is a map K(p) — D*(ly) which is an isomorphism locally around
each singular fibre, but not a global isomorphism for p > 5.

Proof. [HKW2, theorem 1.4.8] O

I want to describe briefly the map K(p) — D*(lp) in case p = 5. Recall that
the 12 cusps of X(5) correspond to the vertices of an icosahedron. On the
other hand these cusps can be labelled by pairs (a,b) € (ZsxZs\ {(0,0)}/+1.
Opposite vertices of the icosahedron correspond to pairs (a,bd), (a', ") with
[a: 8] = [a': b]. Let us consider (0,1) and (0,2). Then the fibres of K(5)
over these cusps consist of 3 rational curves each. The map K(5) — D*(lp)
identifies two rational curves in different fibres as follows:

identify

v AN

(0,1) (0,2)

The result is a configuration of 5 lines as depicted in (3.6), namely the corank
2 boundary component E(h.1)).
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4 Geometry of the space of HM-surfaces

The geometry of the space PI" of HM-surfaces was studied in detail by Barth
and Moore [BM]. Some of their results can be summarized as follows.

Theorem 4.1 ([BM]) (i) The variety PLyng of singular HM-surfaces is an
irreducible singular rational surface of degree 10 in PT.

(ii) The tangent scrolls together with the 12 singular HM-surfaces which con-
sist of five planes with a double structure form a smooth rational curve Cy2
of degree 12.

(iii) The double elliptic scrolls together with the 12 singular HM-surfaces con-
sisting of five planes with a double structure form a smooth rational curve Ce
of degree 6.

Proof. [BM, section 1] O

Remark 4.2 Barth and Moore also proved the following:

(i) Ce and Ci2 are the unique As-invariant rational curves of degree 6, resp.
12 in PT.

(i) PLqing is the trisecant surface of Cs.

(iii) The siz lines which parametrize HM-surfaces which consist of five quadrics
or five double planes are the siz double tangents of Cs.

It is easy to describe an explicit rational parametrization of PI'yng: consider

the map
50(5) — Pling

which maps each point P in §%(5) to the translation scroll X (E, P) where E
is the fibre of S°(5) containing P. (Recall that E is naturally embedded in
P4.) Since X(E, P) = X(E, —P) this factors through a map

K°(5) — Plying
It is not difficult to see that this can be extended to a morphism
¢ : K(5) — Pling

and it is also possible to interprete the map ¢ geometrically (see e.g. [BHM2]).
The map ¢ has interesting geormetric properties. Let O resp. B be the image
of the zero-section, resp. the 3-section of non-zero 2-torsion points in S(5).
The fibres of K(5) are mapped to lines in Pl'sng. These are all HM-surfaces
which are singular along a fixed quintic elliptic curve E(A : p). The O-section
is mapped to the curve Ci2, and the curve B is mapped 3 : 1 onto Cs. (This
reflects the fact that every quintic elliptic scroll contains three ellipt normal
quintic curves). Finally consider the situation over a cusp where we have the
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following picture

The map ¢ contracts the two rational curves where B intersects transversally,
resp. which B does not intersect. The remaining rational curve is mapped
to a double tangent of Cs. Singular fibres over cusps belonging to opposite
vertices of the icosahedron are mapped to the same double tangent of Cs.

5 The extension theorem

The Horrocks-Mumford map ¢° : A%(1,5) — PT can be extended to the Igusa
compactification .A*(1,5). First, however, recall that the line

]Pl— = ]P(V—), V- = (61 — €4,€2 — 63)
is a jumping line of order 3 of F, i.e.
F||>; = OP;(G) ® OP;(_l)-

There exists a subgroup G' C Ns, isomorphic to SL(2, Zs) which fixes P (as
a line). Hence we can view F(Opl-(G)) as an SL(2,Zs)-module. As such it
decomposes into two irreducible modules of rank 4 and 3 respectively:

[(Op;(6)) = x4 ® X3

(For a character table of SL(2,Zs) see [HM, appendix]). Recall that T'(F) is
also an SL(2, Zs)-module with

I(F) = xa.

Lemma 5.1 The restriction map rest: I'(F) — F(Fll”f) = y4 @ x3 defines
an isomorphism of I'(F) with the x4-part of F(OPT(6))‘

Proof. Since an abelian surface contains no line the restriction map is non-
zero. The claim follows from Schur’s lemma. O

Remark 5.2 (i) This shows that the HM-surfaces X, are determined by the
(unordered) 6-tuple X, N P]. The multiplicities of this 6-tuple also describe
the type of X, (see [BM, p. 233]):
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multiplicities type of X,
1 1 1 1 11 abelian surface
2 1 111 translation scroll
g 11 1 tangent scroll
2 2 2 double elliptic quintic scroll
2 2 1 1 union of five quadrics
4 2 five planes with a double structure

(i) If X, is smooth abelian, then the 6 points X,NPT are the 6 odd 2-torsion
points of the symmetric line bundle Oy, (1).

We can now state the extension theorem.

Theorem 5.3 The Horrocks-Mumford map ¢° : A%(1,5) — PT' can be ez-
tended to a morphism ¢* : A*(1,5) — PI'. The map ¢* has the following
properties:

(i) It maps the closure HY of the Humbert surface H to the rational curve
Ch2 parametrizing tangent scrolls and unions of five planes with a double
structure.

(i) It maps Hj to the rational curve Cs parametrizing quintic elliptic scrolls
and unions of five planes with a double structure.

(iii) The closure D*(lp) of the central boundary surface is mapped onto Plgpng.
(iv) The 12 surfaces D*(l(ap)) are contracted to the 12 points corresponding
to unions of five planes with a double structure.

(v) All lines in E(h,.)) with the exception of the non-adjacent cc-line Ry = R)
are contracted to points parametrizing unions of five planes with a double
structure. The line Ry = R, is mapped to a line in PT’ parametrizing unions
of five quadrics, resp. five planes with a double structure, i.e. a double tangent

Of Ce.

Outline of proof. The problem consists of two parts: One has to extend ¢° to
the Humbert surfaces Hy and H,, and to the boundary of A*(1,5). In both
cases the same method can be applied. Consider a point (A4, H, a) € A%(1,5)
and assume that

A=CL,

where L. is spanned by the rows of the period matrix

1 T2

_ ™= 7
2. = 1 0
0 p

with
T = (Tl T2> € 52.
T2 T3
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-6d)

We consider the theta functions

For k € Z, let

Ou(r,z) = 3 rilbarbr@rars]  peg
q€Z?

(Note that this notation differs slightly from that of [HKW2, part III].) These
theta functions are all sections of the same line bundle £, on A, and the map

R A — ]P4
L P, (©o(z) :...: O4(z))
is Hs x Zg-equivariant. In particular, if (4, H,a) € A°(1,5) then
©'([7]) = ¥°(A, H, @) = pic,|(A) € PT.

Let p1,...,pe be the 6 odd 2-torsion points of A with respect to £,. In view
of our above discussion the point %([7]) is determined by the 6-tuple

(Ol(pi) : 92(1")) € ]Pl—a i= L... a6'

Explicit calculation then shows what happens when 7 is a point on either H;
or ‘H,, or when 7 goes towards the boundary. For details see [HKW2, II1.3
and III.4]. O

In section I1.2 we mentioned Comessati’s result who embedded abelian
surfaces with real multiplication in Q(v/5) in P4. It is interesting to identify
these surfaces in the space PI'. Consider the Humbert surface

H3={T= (Tl ::) 652; 5T1—-5T2+T3=0}

T2

in Sy, resp. its image Hs in A(1,5). This parametrizes abelian surfaces with

real multiplication in Q(+/5).

Proposition 5.4 ([HL2]) The closure H; of the Humbert surface Hs in
A*(1,5) is mapped to the unique As-invariant cubic in PT' which is the Clebsch
diagonal cubic.

Proof. This follows immediately from [HL2, theorem 5.1]. O

Remark 5.5 It was first shown by Hirzebruch [Hi] that the symmetric Hil-
bert modular surface Yy(5, \/5) associated to the ideal generated by /5 in the
ring of integers in Q(+v/5) has a natural compactification which is isomorphic
to the Clebsch diagonal cubic.
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6 Degenerations of abelian surfaces

In [HKW2, part II] the boundary points of A*(1, p) were interpreted as degen-
erate polarized abelian surfaces. It is natural to ask, how in the case p = 5,
these abstract degenerations relate to degenerations of the embedded abelian
surfaces, i.e. to degenerations of HM-surfaces. Here we shall discuss the two

most important cases.
T = (Tl T2> € S,
T2 T3

Again let
and consider the period matrix

1 T2

_ T2 T3
2. = 1 0
0 5

Denote the rows of , by e,...,es. They define the rank 4 lattice
LT = Zel + Z62 + Z63 + Ze4.

The point 7 goes to the central boundary component if 7 goes to ico. In this
case the lattice L, degenerates to the rank 3 lattice

Lfr = Z62 + Z63 + Ze4.

The quotient
AL =C*/L.

is a semi-abelian surface of rank 1. More precisely it is an extension

1 —C — Al — E,, —1

where

E,,, = C/(Z7s + Z5).

Adding a 0-section and a section at infinity one can compactify A; to a P;-
bundle A,. It is easy to compute that

A, =P(Ok,,, ® Og,,, (5(e — 0)))

where
e=[r) €E,,

and O denotes the origin. Let

A=A~
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be the singular surface which arises by glueing the section at infinity and the
0-section of A, with the shift e:

z

N\

z+e

Eis

Considering limits of theta functions one can prove the existence of a polariza-
tion £, on A, (and one can in fact also generalize the notion of level-structure
to the singular case). The degenerate abelian surface (A,, L,) depends on the
pair (72, 73) or, more precisely on the elliptic curve E,, , and the point e = [7]
on E., . The points te give the same degenerate abelian surface. If we iden-
tify E,,, with the appropriate fibre in the Shioda modular surface S°(5),
then e is a point in K°(5). Recall that the central boundary surface D°(lp)
is isomorphic to K9(5). Under this identification (A,,L,) is the degenerate
abelian surface associated to the point in the central boundary surface defined
by the pair (2, 73) (cf. [HKW2, proposition I1.4.5]).

Proposition 6.1 ((HW2]) (i) If 2¢ # 0 then the line bundle L, is very
ample and embeds A, in P4 as the translation scroll X(E,,,,€) (cf. section
I11.5).

(i) If e # 0 but 2¢ = O then L, is base point free. It maps A, generically
2:1 onto a quintic elliptic scroll in Ps.

Proof. This can be shown by studying the degenerate theta functions which
define £,, cf. [HW2], [HKW2]. O

Remark 6.2 If e = 0 then L, has base points. After a suitable modification
this leads to tangent scrolls of elliptic quintic curves in Py (cf. [HW2, 4.3]).

If T goes to a point on a peripheral boundary component Do(l(u,b)) then A,
is a cycle of five elliptic ruled surfaces. In this case the line bundle £, has
always base points.

If 7 goes to a corank 2 boundary component then L, degenerates further
to a rank 2 lattice LY. Since C?/L! = (C*)? the resulting degenerate abelian
surfaces break up into rational parts. The surfaces constructed in [HKW?2] are
of two types: They are either a union of five quadrics or a union of five pro-
jective planes blown up in 3 points and 10 planes, resp. a union of 10 planes,
depending on which degeneration one associates to the ”deepest” points in
A*(1,5) (for details see [HKW2, I1.4] resp. [Mu]). The most interesting case
are the degenerate abelian surfaces associated to points on the non-adjacent
cc-curves Ry = Rj. Here we find a union of five planes with the following
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identifications:

y

ze AeC)

\' Az

/\'5y't )

In this case £, is still very ample and embeds A, as a union of five quadrics
in P4. It was already remarked in [HM] that the above diagram interpreted
as a real picture describes a real 2-torus.
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Introduction

Soit X une variété projective lisse irréductible X de dimension », munie
d’un faisceau trés ample Ox(1); considérons l'espace de modules M =
Mx(r,c1,...,¢s) des classes de S—équivalence de faisceaux semi-stables sur
X, de rang r et classes de Chern ¢y,. .., ¢, fixées dans 'anneaun d’équivalence
numérique Num(X). C’est une variété projective, dont on ne peut pas dire
grand chose en général. Mais dans nombre de situations, on obtient une
variété irréductible et normale dont on peut préciser la dimension : c’est
le cas sur les courbes et sur le plan projectif; c’est encore le cas sur toute
surface pourvu que la classe de Chern c; soit assez grande [9] .

Notre principale préoccupation dans le travail présenté ici est ’étude du
groupe de Picard de ces variétés de modules. Il existe une méthode efficace
pour construire des fibrés inversibles sur ces variétés : c’est la notion de fibré
déterminant, qui permet d’associer a certaines classes v € K(X) de 1’algébre
de Grothendieck un fibré inversible Am(u). Pour préciser quelles sont les
classes qui conviennent, il convient de munir K(X) de sa forme quadratique
standard ¢, décrite dans la section 1, et plutdt que d’imposer le rang et les
classes de Chern, on fixe ici la classe ¢ des faisceaux semi-stables étudiés dans
Palgebre K,ym(X) = K(X)/ ker g, ce qui revient au méme. Cette méthode,
inspirée de la construction du fibré déterminant de Donaldson [3] pour les
espaces de modules de fibrés vectoriels sur les surfaces, s’étend sans difficulté

(cf. théoréme 2.4) a tous les espaces de modules de faisceanx semi-stables,
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méme aux espaces de modules de faisceaux cohérents de torsion considérés
par Simpson.

Dans le cas du plan projectif, 'introduction de cet homomorphisme Ay
permet de donner une présentation unifiée pour le calcul du groupe de Picard
des espaces de modules Mp (c) de classe ¢ € K(P2). L’énoncé donné ici (cf.
théoreme 3.10) regroupe a la fois le théoréme de Drézet, relatif aux faisceaux
semi-stables sans torsion [5] , notre énoncé [15] , relatif aux faisceaux semi-
stables de dimension 1, et 1’énoncé classique de Fogarty relatif & la puissance
symétrique Syme(Pg), correspondant aux faisceaux de dimension 0 et de
longueur £. La démonstration est en fait la méme en dimension 2 et 1,
quand on dispose de la premiére étape dans le probléme de Brill-Noether
relatif & ces espaces de modules. Pour les faisceaux semi-stables sans torsion
nous avons bénéficié de l'aide de L. Gottsche et A. Hirschowitz [10] qui
ont établi pour nous le théoréme de Brill-Noether dont nous avions besoin.
Pour les faisceaux de dimension 1, cet énoncé ne pose pas de difficulté et
s’obtient en fait directement en identifiant par projection sur P; certains
ouverts des espaces de modules considérés a des espaces de modules de
paires stables (G, ¢), ol G est un fibré vectoriel sur la droite projective Py,
et ¢ : G — G(1); ces paires sont analogues aux fibrés de Higgs.

La description du groupe de Picard des espaces de modules de fibrés
semi-stables de déterminant fixé sur les courbes due & Drézet et Narasimhan
[7] s’obtient aussi grace & ’homomorphisme Am. Nous obtiendrons en fait
leur énoncé comme conséquence de la description du groupe de Picard
de certains espaces de modules de systémes cohérents semi-stables. Ces
systémes cohérents, introduits dans la section 4, sont des paires (I',F)
formées d’un faisceau algébrique cohérent F, et d’un sous-espace vectoriel
' ¢ H%(F) de l'espace vectoriel des sections de F; ils généralisent les
systémes linéaires. Sur les courbes, cette notion n’est pas nouvelle : sous le
nom de paires semi-stables, elles ont été abondamment utilisées par divers
auteurs : S. Bradlow, A. Bertram, O. Garcia-Prada, N. Raghavendra et
P.A. Vishwanath [22], A. King et P. Newstead [11], ..., et notamment pour
les fibrés de rang 2 par Thaddeus [24]. Mais la notion de semi-stabilité qui
nous a parue la plus adaptée pour les applications envisagées est différente
de celle qu’ont introduite ces auteurs. Sur une variété X de dimension =,

elle permet de ramener certains énoncés relatifs aux espaces de modules de
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faisceaux cohérents sans torsion a des énoncés sur des faisceaux cohérents
dont le support est de dimension n—1. Ce dévissage ne pose aucune difficulté
sur les courbes et sur les surfaces (cf. corollaires 4.21 et 4.22). Ainsi, sur
les courbes, on rameéne par cette méthode 1’étude des espaces de modules
de fibrés vectoriels de rang r, munis d’un espace vectoriel de sections de
dimension r, & celle de faisceaux cohérents de dimension 0, munis d’un
espace vectoriel de sections de dimension r. Parmi ces faisceaux cohérents
de dimension 0, les faisceaux structuraux &p de diviseurs D C X jouent un
role fondamental dans le calcul.

Nous utilisons aussi les systémes cohérents semi-stables sur le plan
projectif dans la section 5.2 pour ramener 1’étude de ’espace de modules
'~ M, des faisceaux semi-stables de rang 2, de classe de Chern (0,4) a
celle de faisceaux semi-stables de dimension 1 portés par des comiques,

éventuellement singuliéres. Ce dévissage permet d’étudier ’application
v M4 — |6P;(4)| = P14

qui associe a la classe d’un faisceau F la quartique de ses droites de saut.
On sait classiquement [1] que ce morphisme est génériquement fini, et que
I’image contient des courbes lisses. L’espace de modules M, est une variété
irréductible de dimension 13, et 'image de cette application est donc une
hypersurface £ appelée hypersurface des quartiques de Liiroth : quand elles
sont lisses, il s’agit des quartiques qui sont circonscrites & un pentagone.
L’intersection de . avec le diviseur # des quartiques singuliéres a deux
composantes irréductibles, dont l'une est I'image du diviseur correspondant
aux classes de faisceaux semi-stables provenant des systémes cohérents sur
les coniques singuliéres dans le dévissage évoqué ci-dessus : ce diviseur
est aussi le diviseur des classes de faisceaux semi-stables qui possédent
une droite de saut d’ordre > 2. Les points de cette composante sont
classiquement appelés quartiques de Liiroth singuliére de type II. Une telle
quartique de Liroth singuliére q de type II, si elle est générique, posséde
une géométrie abondante, qui permet en fait de reconstruire le point p € My
dont c’est l'image : la fibre de v au-dessus de g est alors réduite au point
p; compte-tenu du fait que v est non ramifié en p, c’est I’argument essentiel
qui permet de montrer que I’application 4 est de degré 1 sur son image.

Par variété algébrique, on entend schéma de type fini séparé sur C. Les
points considérés seront les points fermés.
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1. L’espace de modules de Simpson

Soit X une variété algébrique projective lisse et irréductible, de dimension
n, munie d'un faisceau trés ample €x(1). On désigne par K(X) l'algébre
de Grothendieck des classes de faisceaux algébriques cohérents, et par & la
classe dans K(X) du faisceau structural &y d’une section hyperplane Y C X.
Cette algébre est équipée d’une forme quadratique ¢ : u — x(u?), dont on
désigne par <, > la forme polaire. Cette forme quadratique g(u) se calcule

en termes du rang et des classes de Chern de .

Ezemples

(1) Si X est une courbe de genre g, et si u est de rang r et degré k on a
g(v) = 2rk +r*(1 —g).

(ii) Si X est une surface, et si u € K(X) est de rang r, de classe de Chern

c1 et de caractéristique d’Euler-Poincaré y, on a
g(n) = 2rx + cf — r’x(6x).

Le noyau kerq est constitué des classes dont le rang et les classes
de Chern, vues dans 'annean d’équivalence numérique sont nulles. On

considere le quotient
Knum(X) = K(X)/ ker ¢

et on désigne encore par ¢ la forme quadratique induite, et par & la classe
d’une section hyperplane dans ce quotient.
Soit F un faisceau algébrique cohérent sur X. On appelle dimension de

F la dimension d du support de F. Le polynéme de Hilbert de F s’écrit

Pr(m) = < F, 6x(m) >
=<F,(1-R)"™ >
= Y Chyia <Fh>
0<i<d
Définition 1.1. — Soit F un faisceau algébrigue cohérent de dimension

d sur X. On appelle multiplicité de F le nombre r =< F,h? >, et polynéme
de Hilbert réduit de F le polyndme

Pp

sz_r—
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Ezemples
(1) Si F est un faiscean sans torsion de rang rg(F) sur X, la multiplicité

est r = rg(F) deg(X).

(ii) Si F est de dimension » — 1, la multiplicité de F est le degré de la
variété de Fitting de F. Cette variété de Fitting est une hypersurface en
dehors du fermé, de codimension > 2, des points z tels que F, n’est pas
de Cohen-Macaulay. En dehors de ce fermé, le faisceau F a une résolution

localement libre
0—-R; —f> Ry—=F—=0

et I’hypersurface définie par det f s’étend a la variété X. Cette hypersurface
Z s’appelle le support schématiqgue de F. Le faisceau F est muni d’une

structure naturelle de &z—module.

Définition 1.2. — Un faisceau algébrique cohérent de dimension d sur
X est dit pur de dimension d s’il n’a pas de sous-faisceau cohérent non nul

de dimension < d.

Définition 1.3. — Soit F un faisceau algébrique cohérent de dimension
d et de multiplicité r. On dit que F est semi-stable (resp. stable) si
(1) il est pur de dimension d;
(i) pour tout sous-faisceau cohérent F' C F de multiplicité 0 <r' <r on a

pre Spr  (resp. <)

Dans la derniére inégalité, l'ordre considéré sur les polyndmes est
lordre lexicographique, en commengant par les termes de plus haut degré ;
autrement dit, étant donnés deux polynémes P et Q & coefficients réels,
P < Q signifie que P(m) < Q(m) pour m assez grand.

La catégorie additive des faisceaux algébriques semi-stables F' de polynéme
de Hilbert réduit fixé est une catégorie abélienne dans laquelle les ob jets sim-
ples correspondent aux faisceaux stables. Dans cette catégorie, tout faisceaun
semi-stable F a une filtration de Jordan-Holder. On entend par 13 une suite

croissante {0} = Fg CF; C... C Ft = F telle que le gradué

gri=F;/F;,
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soit stable. Une telle filtration n’est pas unique, mais le théoréme de
Jordan-Holder affirme que le gradué gr(F) = ®;gr; est bien défini &
isomorphisme prés. Suivant Seshadri, on dit que deux faisceaux semi-stables

sont S—équivalents si leurs gradués de Jordan-Hélder sont isomorphes.

Théoréme 1.4. — (C. Simpson) La famille des faisceauz semi-stables

de polynéme de Hilbert fixé P est limitée.

Définition 1.5. — Une classe ¢ € Kpym(X) est dite effective si c’est la

classe d’un faisceau cohérent non nul.
Il revient au méme de demander que le polynéme de Hilbert de ¢
Pe(m) =<¢,(1-h)™™ >

est lui-méme > 0. Si c est une telle classe effective, la dimension de ¢ est le
degré de ce polyndme, c’est-a-dire le plus grand entier d tel que < ¢, ¢ ># 0.

Soit ¢ € Knpum(X) une classe effective. On considére le foncteur
S — My(c)(S) associant a la variété algébrique S I’ensemble des classes
d’isomorphisme de faisceaux cohérents F sur S x X, plats sur S, de dimen-
sion relative d, et tels que pour tout point fermé s € S le faisceau induit F,

sur la fibre au-dessus de s soit de classe c.

Théoréme 1.6. — (C. Simpson) Soit ¢ € Knum(X) effective de di-
mension d. Il existe pour le foncteur My(c) un espace de modules grossier
Mx(c). C’est une variété projective, dont les points fermés sont les classes

de S—équivalence de faisceauz semi-stables de classe c.

Ezemples

(i) Si la dimension d est 0, les faisceaux considérés sont de dimension 0 ;
ils sont tous semi-stables; se fixer le polynéme de Hilbert revient & fixer
la longueur ¢ = x(F) de ces faisceaux. L’espace de modules Mx(c) est

isomorphe a la puissance symétrique de X :
Mx(c) ~ Sym‘(X)

(ii) Si la dimension d est n = dimX, la notion de stabilité ci-dessus

coincide avec celle qui avait été introduite par Gieseker dans le cas des
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surfaces [8] , et par Maruyama [19] en toute dimension. L’espace de modules
ci-dessus est alors une réunion de composantes connexes de l’espace de
modules de Gieseker et Maruyama.

(iii) Si ¢ est de dimension n — 1, désignons par c; la premiére classe de
Chern de ¢ dans Num'(X). Considérons le schéma de Hilbert Div®!(X) des
hypersurfaces de X de classe fondamentale ¢;. On a alors un morphisme

canonique
Mx(c) — Dive(X)

qui associe a la classe d’un faisceau F son support schématique. Au-dessus
d’un point représentant une hypersurface Y de classe fondamentale ¢; la
fibre est ’espace de modules des &y-modules cohérents semi-stables dont
la classe dans Kpym(X) est ¢. Sil’hypersurface Y est intégre, ces faisceaux
sont les faisceaux cohérents sans torsion et de rang 1 sur Y, dont la classe
est ¢ dans Kpum(X) : la stabilité est dans ce cas automatique.

Dans le cas ou X est de dimension 2, I'hypothése de pureté signifie que les
faisceaux F sont de Cohen-Macaulay de dimension 1; si Y est une courbe
lisse, la fibre au-dessus de Y s’identifie alors a la composante du groupe de
Picard Pic,(Y) des faisceaux inversibles sur Y de caractéristique d’Euler-

Poincaré x.

2. Fibrés déterminants sur Mx(c)

s

Dans cette section, on montre comment associer a certaines classes
v € K(X) un fibré inversible Am(u) € Pic(Mx(c)).

2.1. L’homomorphisme \ g

Soit G un groupe algébrique opérant sur une variété algébrique S. On
désigne par K&(8) 'algebre de Grothendieck des classes de fibrés vectoriels
algébriques, munis d’une action de G au-dessus de ’action donnée. L’action
de G induit une action naturelle sur le produit S x X. On désigne par
K%(S x X) l'algébre de Grothendieck des classes de faisceaux algébriques

cohérents ¢, plats sur S, et munis d’une action de G au-dessus de ’action
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de G sur S x X. Considérons les projections canoniques

pr2

SxX — X

pri ]

S

On a alors un morphisme
prir: K&(S x X) — K€(S)

qui associe a la classe du faisceau ¥ la classe de Y .(—1)'Ripri,(¥). Ces
faisceaux de cohomologie R! pr1x(¥) sont les faisceaux de cohomologie d’un
complexe fini de fibrés vectoriels Rpr1,(¥) muni d’une action de G.

On se fixe maintenant sur S x X un faisceau algébrique cohérent &, plat
sur S, muni d’une action de G au-dessus de ’action donnée sur S x X. Sur
la fibre au-dessus de s € S la classe dans Knym(X) du faisceau induit &,
est indépendante de s et notée c¢; on dira que F est une G—famille plate
de faisceaux cohérents de classe ¢ € Knum(X) paramétrée par S.

On désigne par Pic®(S) le groupe des classes d’isomorphisme de G—fibrés
inversibles sur S, et on pose, dans K¢(S x X), #(uv) = & ® prj(u) pour
u € K(X), et dans Pic%(S)

Ag(u) = det prio( F(u)).

Compte-tenu des remarques ci-dessus concernant le morphisme pry:, cette
formule a bien un sens. L’application \g : K(X) — PicG(S) est un

homomorphisme de groupes abéliens qui satisfait aux propriétés suivantes :

Lemme 2.1. —
(i) La formation de Ag(u) est compatible aur changements de base G—équs-
variants.

(ii) Etant donnée une suite ezacte de G—faisceauz cohérents plats sur S
0-F o F F" =0

onadg(u)=Az(v)®Agn(u) dans PicG(S).

(iii) Pour tout G—fibré inversible A surS on a

Aggprs(a)(u) = Az (u) @ AB(<o>)
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On peut en effet supposer que u est la classe d’un fibré vectoriel sur X.
Le lemme est une conséquence facile de la construction du complexe image
directe Rpr1.(F ® pr3(E)) (cf. par exemple [13] ).

2.2. Application au schéma de Hilbert

Rappelons d’abord la notion de bon quotient, introduite par Seshadri.

Définition 2.2. — Soit G un groupe algébrique affine, opérant sur une
variété algébrique R. Un morphisme de variétés algébriques f : R — Y est
appelé bon quotient de R par G 31 f est équivariant, et si les conditions
suivantes sont satisfaites :

(1) le morphisme f est affine et surjectif;
(ii) tmage d’un fermé G—invariant est un fermé de Y, et f sépare les fermés

G—invariants disjoints;

(iii) le morphisme d’algébres
Oy — f.(Or)C

ot le membre de droite désigne le faisceau des sections G—invariantes de

Uimage directe du faisceau structural, est un isomorphisme.

Définition 2.3. — Un bon quotient f : R — Y d’une variété algébrigue
R par Uaction d’un groupe algébriqgue G est dit géométrique 3: les orbites de

G dans R sont fermées.

Soit ¢ € Knpum(X) une classe effective de dimension d; considérons
le polynéme de Hilbert P(m) =< ¢,(1 — )™ > . Soit m un entier
assez grand, et H un espace vectoriel de dimension P(m). Considérons le
fibré vectoriel B = H ® &x(—m), et le schéma de Hilbert-Grothendieck
R = Hilb(B,c) des faisceaux cohérents quotients de B de classe ¢. Sur
R x X, on dispose d’un faisceau quotient universel #. Sur le schéma R, le
groupe G = GL(H) des automorphismes de B opére de maniére naturelle, et
le faisceau universel & est lui-méme muni d’une action de G au-dessus de
Paction ci-dessus. Par suite, on obtient par la construction du paragraphe

ci-dessus un homomorphisme de groupes

Az K(X) = Pic®(R)
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Considérons 'ouvert R?? des points ¢ € R satisfaisant aux conditions
suivantes
— le faisceau F; induit au-dessus de t est semi-stable;

— Uapplication canonique H — H%(F;(m)) est un isomorphisme.

Cet ouvert est invariant, et la propriété de module grossier fournit un
morphisme 7 : R** — Mx(c) équivariant pour ’action de G. La construction
de Simpson [23] montre qu’en fait, pourvu que m ait été choisi assez grand,
ce morphisme est un bon quotient. L’action du groupe G sur R*® n’est
pas libre; le stabilisateur d’un point ¢ € R?®® s’identifie au groupe des
automorphismes du faisceau #;. Ainsi, cette action se factorise a travers
G = GL(H)/C*.

L’ouvert R? des points t € R*? tels que &%, soit stable est invariant, et
I’action du groupe G = GL(H)/C* est libre sur cet ouvert. Cet ouvert R*
est 'image réciproque d’un ouvert M§(c) et la projection 7 : R® — M3(¢)
est un quotient géométrique. Les points fermés de M§ (c) correspondent aux
classes d’isomorphisme de faisceaux stables de classe c.

Il n’existe pas en général de faisceau universel paramétré par la variété
algébrique M3 (c). Ceci arrive toutefois si les coefficients < ¢, k' > qui
figurent dans le polynéme de Hilbert sont premiers entre eux. Dans de
telles circonstances, tous les faisceaux semi-stables sont stables : ’espace
de modules M (c) = Mx(¢) est alors un espace de modules fin; mais un tel
faisceau universel 4 n’est pas unique, puisque si A est un fibré inversible

sur Mx (c), le faisceau 4 ® pri(A) est encore un faisceau universel.
2.3. L’homomorphisme Ay
En général, pour u € K(X) le faisceau Az (u) ne provient pas d’un fibré

inversible sur Mx(c). Désignons par H la sous-algébre unitaire de K(X)

engendrée par h, et pour ¢ € Kpym(X), par ¢! lorthogonal de ¢ dans

K(X) ; enfin, soit H' l'orthogonal de H, et H-+ le biorthogonal.
Théoréme 2.4. — (i) L’homomorphisme canonique

Az ctnHLL - Pic®(R*)
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se factorise de maniére unique suivant le diagramme
Az X
ctnHY 5 PicB(R%)

AM\ T T
Pic(Mx(c))

(ii) Pour v € ¢t N HLL) le fibré inversible Am(u) est caractérisé par la
propriété universelle suivante : pour toute famille 4 de faisceauzr semi-

stables de classe ¢ paramétrée par S, on a dans Pic(S)

fa(Am(n)) = Ag(u),
ot fg : S — Mx(c) désigne le morphisme modulazre.

Le fait que 7 : R®* — Mx(c) soit un bon quotient entraine évidemment
que le morphisme 7* est injectif, et donc I'unicité de la factorisation. La
démonstration de P'existence de AM repose sur un lemme de descente di a

Kempf, Drézet et Narasimhan :

Lemme 2.5. — Soit G un groupe algébrigue opérant sur une variété
algébriqgue X, et w : X = Y un bon quotient de X par laction de G. Le

morphisme image réciprogue
7* : Pic(Y) — Pic%(X)

est injectif et a pour image le groupe des classes de G—fibrés inversibles L
satisfaisant & la propriété suivante : pour tout point z € X d’orbite fermée,

le stabilisateur G, de z agit trivialement sur la fibre L, de L au point z.

Démonstration du théoréme 2.4

Ce théoréme est démontré pour ’espace de modules des faisceaux semi-
stables de dimension d = n dans [13] . La démonstration s’étend sans
difficulté au cas des faisceaux de dimension quelconque. Les points ¢t € R*®
d’orbite fermée correspondent aux faisceaux %#; qui sont polystables, c’est-
a-dire somme directe de faisceaux stables de méme polynéme de Hilbert

réduit. Un tel faisceau s’écrit

.Qt:Ffl@...@F:l
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ol les F; sont des faisceaux stables de méme polynéme de Hilbert réduit, et
deux & deux non isomorphes. En un tel point ¢ € R, le stabilisateur Stab(t)
du point ¢ s’identifie au groupe produit GL(k1) x ... x GL(k¢) ; compte-tenu
du lemme 2.1 ci-dessus, on peut calculer I’action du stabilisateur sur la fibre
en t, c’est-a-dire 1’espace vectoriel Ag,(u) : si on désigne par ¢(F;) la classe
de F; dans K(X) on constate qu’elle est donnée, pour (g1, ..., ge¢) € Stab(t)
par
(91,--,90) = [ (detgi)<eFoon>,
i=1,..,0

Or, dans K(X) ® Q, le fait que F et F; aient méme polynéme de Hilbert

réduit signifie que la différence

ou r; désigne la multiplicité de F;, appartient & H*. Par suite, si < c,u >=
0, on a aussi < c(F;),u >= 0; ainsi, ’hypothése v € ¢t N HLL entraine
que P’action du stabilisateur du point ¢ est triviale sur Ag(u). On peut donc
appliquer le lemme de descente, ce qui donne la construction de Am(u).
La propriété universelle de ce fibré inversible résulte évidemment de la
construction du morphisme modulaire fg. La démonstration est identique

a celle qui est donnée dans [13] . o

Remarque 2.6. — Sur 'ouvert R® des points stables, les conditions de
descente sont moins restrictives; il suffit, pour pouvoir descendre le fibré
Az (u) de s’assurer que u € c. On obtient donc une factorisation

ct et Pic®(R?)
PIVAN T
Pic(M (<))

et le fibré Am. () ainsi obtenu pour u € ct est caractérisé par une propriété
universelle analogue, relative aux familles de faisceaux stables.
2.4. Exemples

Pour v € K(X), on a < u,h™ >= rg(u)deg(X) et par conséquent les
éléments de H' sont de rang 0. Ceci implique que le groupe A™(X) C K(X)
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des classes d’équivalence linéaire de cycles de dimension 0 est contenu dans
HLL Pouru e A™(X), et ¢ € Kpum(X), on a

< c,u >=rg(c)deg(u).

(1) Faisceauz sans torsion.

Supposons d = n; désignons par Z"(X) le groupe des classes d’équivalence
linéaire de O-cycles de degré 0. On a alors Z*(X) C ¢t N HYL. Pour
u € Z*(X) le fibré AM(u) a alors un sens.

Proposition 2.7. — [13] Soit ¢ € Knym(X) de dimension n, et ¢, son
image dans Num'(X). Pour u € Z*(X) le fibré Am(u) est Iimage réciproque
du fibré Apjcer x)(u) par le morphisme

Mx(¢) — Pic®(X)
qui assocte & un faisceau F son déterminant.

Il résulte de cet énoncé que si on considere l’espace de modules des
Mx(c,L) des faisceaux semi-stables de classe ¢ et de déterminant L fixé,
pour z € ¢t NHLL, la restriction du fibré inversible A\y() & cet espace de
modules ne dépend que de la classe de ¥ modulo Z™(X).

En fait, cet énoncé s’étend en toute dimension d < n.
(2) Faisceauz de codimension 1.

Pour d = n — 1 nous avons A™(X) C ¢t N HLL. Pour v € A™(X),
le fibré Am(u) s’interprete de la maniére suivante. Soit ¢; 'image de ¢
dans Num'(X). Considérons I’hypersurface universelle = dans Div®!(X) x
X paramétrée par Div®'(X), et le fibré inversible associé Ag-(u) dans
Pic(Div®* (X)).

Proposition 2.8. — Soit ¢ € Kpum(X) de dimension n — 1, et ¢; son
image dans Num'(X). Pour u € A™(X) le fibré Am(u) est limage réciproque
de Ap=(u) par le morphisme

o : Mx(c) — Div®{(X)

qui associe a la classe d’un faisceau F son support schématique.
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En effet, étant donnée une famille plate & de faisceaux cohérents purs
de classe ¢ paramétrée par une variété algébrique S, on peut trouver une

résolution localement libre
0—-Rp1—... =2 Ry i» Rop—= & =0
D’aprés le lemme 2.1 on a donc
As () = @i(mi ()

11 suffit de vérifier I’énoncé lorsque u est la classe du faisceau structural d’un

point a; alors
Ag(a) = @i(det Ri(a))™V’ = (det £)(a).

Or, & définit une famille plate de faisceaux purs de codimension 1, donc
relativement de Cohen-Macaulay en dehors d’un fermé A de S x X de
codimension relative > 3 au-dessus de S : ceci implique que By = Imd;
est un fibré vectoriel en dehors de A. En dehors de A, on peut considérer
le fibré inversible det & = det Ro ® (detBo)™!; il est muni d’une section
canonique, dont le schéma des zéros est la trace sur le complémentaire de A
du support schématique ¥ de F#. Cette section s’étend de maniére unique

a S x X : il en résulte une présentation
0— O(—detF)— 6€— 6z — 0.

Par suite, Ag(a) = Agpy(a). D’aprés la propriété universelle de Z, le
morphisme canonique ¢ : S — Div®(X) est tel que (¢ X idx)*(E) = I,
et par changement de base (cf. lemme 2.1), on obtient 1’égalité A g(a) =
¢*(Ap=(a)). La propriété universelle de Am(a) fournit alors 1’égalité

7" (Ae=(a)) = Am(a),

c’est-a-dire I’énoncé attendu. o
La démonstration a montré que si v est la classe d’un cycle effectif de
dimension 0, le fibré inversible A g (%) est muni d’une section dont le schéma

des zéros correspond aux hypersurfaces qui rencontrent ce cycle.

(3) Faisceauz de dimension d < n — 2.
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On a encore comme ci-dessus A™(X) C ctNH* et donc pour v € A™(X)
le fibré inversible Am(u) a un sens. En fait, si & est une famille plate de
faisceaux relativement purs de dimension d, paramétrée par S, en dehors
du support de &, le fibré inversible det & est trivial. Ce fermé est de
codimension relative n — d dessus de S, puisque n —d > 2 cette trivialisation
s’étend & S x X. Il en résulte que pour tout point a € X le fibré inversible
Agz(a) = (det F)(a) est lui aussi trivial.

On a ainsi obtenu :
Proposition 2.9. — Soit ¢ € K,ym(X), de dimension d <n —2. Alors
A™(X) C ker Am.

Plus généralement, si on considére la filtration décroissante FPK(X)
de K(X) donnée par le sous-groupe des classes de faisceaux cohérents de

codimension > p, une variante de 'argument ci-dessus montre que

FHHZK(X) N H C ker Am.

3. Faisceaux semi-stables sur le plan projectif

Le but de cette section est de donner une description du groupe de Picard
des espaces de modules des faisceaux semi-stables sur le plan projectif. On
commencera par rappeler d’abord sous quelles conditions ces espaces de

modules sont de dimension > 1.

3.1. Irréductibilité et conditions d’existence.

Quand X est le plan projectif P, le groupe de Grothendieck K(P3) est
isomorphe & Z3, I’isomorphisme est donné par ¢ — (r, ¢, X), ol r est le rang,
¢y la premiére classe de Chern (vue comme un entier), et x la caractéristique

d’Euler-Poincaré. La forme quadratique est alors donnée par

g(c) =2rx + & —r?

et est donc non dégénérée. Par suite, Knum(P2) = K(P2), et K(P2) coincide
avec la sous-algébre H. Par suite, orthogonal H' est réduit a {0}. On
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désigne par u — u* Pinvolution de K(P3) qui associe a la classe d’un fibré,

la classe de son dual ; on a en termes de rang et classes de Chern

<c*e>=r?—(2rc; — (r — 1)cb)

=2rx — (r? 4 3rcy +¢2)

On sait déja que si c est de dimension 0, et de longueur x > 0, ’espace
de modules n’est pas vide et s’identifie alors & la puissance symétrique de

SymXPs. Dans ce cas, il n’existe pas de points stables, sauf si ¥ = 1.
¥ )

Théoréme 3.1. — Soit ¢ € K(P3) une classe effective de dimension

> 1. Quand il n'est pas vide, Uouvert Mp (c) des classes d’isomorphisme de
2

faisceauz stables de classe ¢ est une variété irréductible et lisse de dimension

1-<c*e>.

En dimension 2, l'irréductibilité de 'ouvert des points stables est une
conséquence d’un énoncé analogue de Ellingsrud et Hulek portant sur
les fibrés vectoriels [6] . En dimension 1, ceci se voit en considérant le

morphisme donné par le support schématique :
o : Mp_(c) — Div?(X)

On vérifie alors que 'image réciproque de 'ouvert des courbes lisses est
dense dans Mx(c) : cet ouvert s’identifie & la variété de Picard relative
des fibrés inversibles de caractéristique d’Euler-Poincaré x [15] ). La lissité
résulte du fait que dans la description de Mpz(c) comme quotient de 'ouvert
R? du schéma de Hilbert R = Hilb(H® Op_(—m),c) (cf. §2.2) I'ouvert R?
est déja une variété lisse pourvu que m ait été choisi assez grand, variété
sur laquelle le groupe G = GL(H)/C* opere librement.

En fait, I'ouvert R*® est déja une variété lisse : compte-tenu du fait que
le quotient d’une variété affine normale par I’action d’un groupe réductif est

une variété normale, on obtient :
Théoréme 3.2. — L’espace de modules Mp _(c) est une variété normale.

Reste & déterminer les conditions sous lesquelles ces espaces de modules

sont non vides. Ceci fait appel a la notion de classe exceptionnelle.
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Définition 3.3. — Etant donnée une classe effective ¢ € K(P3) de
dimension 2, de rang v et premiére classe de Chern c1, on appelle pente de

c le nombre rationnel

€1
p=—.
r
Proposition 3.4. — [6] Soit E un faisceau stable sur Py, de classe

a € K(P3). Les conditions suivantes sont équivalentes :
(i) le faisceau E est rigide, c’est-d-dire tel que Ext'(E,E) = 0;

(ii) on a < a*,a >=1.

Définition 3.5. — Un faisceau stable E sur Py est appelé ezceptionnel
s’il satisfait & 'une des conditions (i), (ii) ci-dessus. Une classe a € K(P3)

est dite exceptionnelle 31 ¢’est la classe d’un faiscean exceptionnel.

Si a est la classe d’un faisceau exceptionnel E, I’espace de modules
Mpz(a) est réduit au seul point défini par le faisceau E, et ce faisceau
est en fait localement libre. Cet espace de modules est donc de dimension
0. Une telle classe exceptionnelle a est donc de rang > 0; elle est en fait
déterminée par sa pente. Désignons € ensemble des classes exceptionnelles.
Cet ensemble est invariant par l'involution a — a* et par l’action du groupe
des classes de fibrés inversibles a — a(z) dite translation par : € Z. On peut
en fait construire toutes les classes exceptionnelles a partir de 1’élément
unité par des opérations algébriques élémentaires. Ainsi, si € contient deux
classes a et b de pentes respectives a et § telles que 0 < § — a < 3, et telles

que < b*,a >=0, il contient 1’élément
<a*b>a-—b

On démontre [4] que € est contruit & partir de 1 en faisant agir les
translations, 'involution a — a*, et cette opération. Par exemple, il contient
les classes e; = (1 — h)™* des fibrés inversibles, la classe du fibré tangent

3¢; — 1, la classe 6 — ez du noyau (de rang 5) du morphisme d’évaluation
H°(6p,(2)) ® Op, — Op,(2).

On sait que s'il existe un faisceau stable et non rigide de classe ¢, on

doit avoir < ¢*,¢ >< 0. Réciproquement, étant donnée une classe effective
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¢, cette condition n’est pas suffisante pour assurer ’existence d'un tel fibré
stable.

Théoréme 3.6. — [6] Soit c € K(P3) une classe effective.

(i) L’espace de modules Mp (c) est non vide de dimension 0 st et seulement
st ¢ est un multiple entier c = ka d’une classe exceptionnelle a. Dans ce
cas, cet espace de modules est réduit au point correspondant & la somme
directe de k exemplaires du fibré ezceptionnel défini par a.

(ii) L’espace de modules Mp (c) est non wvide de dimension > 1 si et
seulement st une des conditions suivantes est satisfaite
— la classe c est de dimension <1;

— la classe ¢ est de dimension 2, et pour toute classe exceptionnelle a € &

de pente a telle que —3 < a+ u <0, ot p désigne la pente de ¢, on a
<a,c><0.

St Vune des conditions (ii) est satisfaite, I’espace de modules Mpz(c) est
en fait de dimension > 2, et si en outre c est de dimension > 1, Vouvert

des points stables est dense.
Compte-tenu de 1’énoncé 3.1 on obtient :

Corollaire 3.7. — Soit ¢ € K(P3) une classe effective. Alors l’espace

de modules Mp (c) est une variété irréductible et normale.

Etant donnée une classe effective ¢ de dimension 2 de pente y, on désigne
par €(c) l'ensemble des classes exceptionnelles a de pente a telles que

—3<a+pX0,et on pose

6(c)= sup <a,c>
ae€(c)
D’aprés 1’énoncé ci-dessus, pour une telle classe ¢, 'espace de modules

Mp, (c) est non vide et de dimension > 1 si et seulement si §(c) < 0.

Proposition 3.8. — Soit ¢ € K(P3) une classe effective.

(i) Si ¢ est de dimension 2 et telle que 6(c) = 0 il existe une classe
exceptionnelle a € €(c) et une seule telle que < a,e¢ >=0.

(ii) S¢ ¢ est de dimension 1, il existe au plus une classe exceptionnelle telle

que < a,c >= 0.
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Cette classe est appelée la classe ezceptionnelle associée 3 c. Cet énoncé
résulte de la description de 6(c) dans le cas (i) [4] . L’assertion (ii) résulte
trivialement de la définition de la forme quadratique. Un telle classe
exceptionnelle n’existe dans le cas (ii) que si le rapport é , ou x est la
caractéristique d’Euler-Poincaré et ¢y la premiére classe de Chern, est la
pente d’un fibré exceptionnel. C’est toujours le cas si ¢, = 1 ou 2, seul cas

qui nous sera utile dans I’énoncé qui suit.

3.2. Le groupe de Picard

Nous sommes maintenant en mesure de décrire le groupe de Picard de
Mp, (c). La question du calcul du groupe de Picard est en fait trés liée a la
question de la factorialité locale de M. Rappelons d’abord de quoi il s’agit :

Définition 3.9. — Soit M une variété normale. On dit que M est

localement factorielle st ses anneauz locaur sont des anneauz factoriels.

Si on considere le groupe ClI(M) des classes d’équivalence linéaire de
diviseurs de Weil, le fait que la variété soit normale implique que le
morphisme canonique Pic(M) — CI(M) est injectif. Dire que X est
localement factorielle signifie que ce morphisme est surjectif, ou encore que

tout fibré inversible sur un ouvert de M se prolonge a M.

Théoréme 3.10. — Soit ¢ € K(P2) une classe effective satisfaisant
Uune des conditions sutvantes, assurant que l’espace de modules Mpz(c) est
non vide et non réduit a un point :

— la classe ¢ est de dimension < 1;

— la classe ¢ est de dimension 2 et §(c) < 0.

Considérons le morphisme canonigue
AM et — Pic(Mp, (c)).

(1) Le morphisme Am est surjectif.

(i1) Il est inyectsf, sauf dans les cas suivants :
— la classe ¢ est de dimension 0 et alors ker Ay = A%(P3);
— la classe ¢ est de dimension 1, et ¢y =1 ou 2;

— la classe c est de dimension 2, et 6(c) = 0.
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Dans les deuz derniers cas, le noyau ker AM est le sous-groupe engendré
par la classe exceptionnelle a associée a c.
(ii1) La vaeriété Mpz(c) est localement factorielle, excepté si c est la classe

d’un cycle de dimension 0 et de longueur > 2.

Cet énoncé est di a Fogarty dans le cas de la puissance symétrique, et a
Drézet [5] dans le cas ol ¢ est de dimension 2. Le cas ol ¢ est de dimension
1 est traité dans [15] . En fait, la démonstration que nous allons esquisser
traite a la fois ces deux derniers cas.

Remarquons que du fait que < a*,a >= 1 pour une classe exceptionnelle,

on a si a € ¢! une décomposition en somme directe

ct=(c,a") ' ®(a)

Il en résulte que le groupe quotient c1/(a) est isomorphe & (c,a*)'; sous

I’hypothése du théoréme, ¢ et a* ne sont pas liés, par suite, ce sous-groupe

est un groupe cyclique. On a ainsi obtenu :

Corollaire 3.11. — Si l'espace de modules Mp (c) est de dimension
> 0 le groupe de Picard Pic(Mp, (c)) est un groupe abélien Libre de rang 2,

sauf dans les cas particuliers (ii) ot c’est un groupe cychque infine.
3.3. L’outil fondamental

Considérons un groupe algébrique G agissant sur une variété algébrique
X (intégre pour simplifier). On désigne par *(X) le groupe multiplicatif
des fonctions réguliéres inversibles. Un morphisme croisé ¢ : G — 6*(X)
est un morphisme de variétés ¢ : G x X — C* tel que pour g,¢' € G et
z € X on ait ¢(gg',7) = ¢(g,9'z)p(g',z). Un tel morphisme croisé ¢ est
dit principal s'il existe ¥ € 6*(X) tel que

RRICL)

On a une suite exacte
0 — HY(G, 6*(X)) = Pic®(X) — Pic(X)¢

ol HY(G, 6*(X)) est le quotient du groupe des morphismes croisés G —

6*(X) par le sous-groupe des morphismes croisés principaux et Pic(X)¢ le
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sous-groupe du groupe de Picard des éléments invariants sous 1'action de
G. Si 6*(X) = C*, le groupe des morphismes croisés s'identifie au groupe
Char(G) des caractéeres G — C*.

3.4. Le groupe de Picard de Sym‘(P,)

On se propose de vérifier ’énoncé 3.10 dans le cas de la puissance
symétrique. Soit ¢ un entier > 0. La puissance symétrique Sym*(P;) est
le quotient de P2e par 'action du groupe symétrique &, par permutation
des facteurs. On peut donc appliquer 1’énoncé ci-dessus pour déterminer
le groupe PicG‘(Pf) . Le groupe H'(&,,C*) s'identifie au groupe des
caractéres de &y; le groupe des invariants Pic(Pf)G‘ est isomorphe a Z, avec
pour générateur le fibré inversible &/(1,...,1). D’autre part par le lemme

de descente 2.5 déja évoqué, on a une suite exacte

0 — Pic(Sym(P3)) — Pic®«(P,Y) & [ Cher(sy)
xeP,f

oll &, est le stabilisateur du point z. Evidemment, l'intersection de kerp
avec I'image de Char(G;) est réduite & {0}. Par suite, on obtient un

plongement
Pic(Sym®(P,)) — Pic(P,})®

et par le lemme de Kempf, le générateur £(1,...,1) provient d’un fibré
inversible sur Sym®(P3) : ce plongement est donc un isomorphisme.

Il reste & vérifier que ’homomorphisme Ay : ¢t/A? — Pi¢(M), ol
M = Sym®(P;) est un isomorphisme. Le membre de gauche est un groupe
cyclique engendré par la classe de h. Pour calculer AM(k), on considére la
famille universelle de faisceaux semi-stables paramétrée par P,f : si A est
la diagonale de Py x Py et p; : P, — P la i-éme projection, il s’agit du
faisceau

F = &1 (pi x id)*(Oa)
On est bien siir ramené par fonctorialité 4 faire le calcul dans le cas £ = 1.
Dans ce cas, on obtient Oa(h) = O — 6a(0,—1) dans K(P2 x P3) ce qui

fournit, apres projection, I'égalité Ap, (k) = Op (1) dans Pic(P;). Par suite
Ag(h) = Ope(1,...,1) dans Pic(Py).
2
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Le groupe symétrique &, opeére librement sur le complémentaire de la dia-
gonale : ainsi, tout caractére non trivial de &, définit un fibré sur l'ouvert
U complémentaire de la diagonale dans M = Sym(P3) et un tel élément est
non trivial et de torsion dans Pic(U). Puisque le complémentaire de U est
de codimension 2, le morphisme de restriction Pic(M) — Pic(U) est injectif.
Ces éléments de torsion ne peuvent donc pas s’étendre & M. Un tel caractére
non. trivial existe si £ > 2; ainsi, dans ce cas, la variété de modules M n’est

pas localement factorielle.

3.5. Le probléme de Brill-Noether

On se propose dans la suite de donner une esquisse de la démonstration du
théoréme 3.10. Les détails sont exposés dans le cas ou ¢ est de dimension 2
dans [16] ou [17]. Nous aurons d’abord besoin de renseignements concernant
le probléme de Brill-Noether.

Soit ¢ € K(P3) une classe effective de dimension > 1, de rang r, premiére
classe de Chern ¢;, et de caractéristique d’Euler-Poincaré y. On suppose
que ¢; + 3r > 0, de sorte que pour tout faisceau semi-stable F de classe ¢ on
a H%(F) = 0 : ceci résulte du théoréme de dualité de Serre si la dimension

de c est 2; si la dimension est 1, c’est trivial.

Théoréme 3.12. — Soient ¢ € K(P») une classe effective satisfaisant
auz conditions ci-dessus, et M = Mpz(c) Uespace de modules des faisceauz
semi-stables de classe c.

(i) St x > 0 ( resp. < 0) le fermé de M défini par les classes des faisceaux
semi-stables F satisfaisant & la condition déterminantielle H(F) # 0
(resp. HY(F) # 0) est de codimension > 2.

(ii) S x = 0, le sous-schéma de M défini par la condition déterminantielle

H!(F) # 0 est, s’ n’est pas vide, une hypersurface intégre.

Cette hypersurface est en fait un diviseur de Cartier : le fibré in-
versible Am(1) est muni d’une section canonique (appelée fonction théta)
et ’hypersurface en question est le schéma des zéros de cette section.

Cet énoncé est dii dans le cas ol ¢ est de dimension 2 & L. Géttsche et
A. Hirschowitz [10] . Nous ne traitons ici que le cas ol ¢ est de dimension
1. Sic; £ 2, les variétés déterminantielles qui figurent dans ’énoncé sont

vides. On suppose donc ¢; > 2. Dans ce cas, le fermé des points non stables
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est de codimension > 2 [15] , de sorte qu’il suffit de se placer sur I'ouvert
des points stables. On fixe un point p € P et on considere I'ouvert U,
de M des faisceaux stables dont le support ne passe pas par p. Ces ouverts
U, recouvrent ’ouvert des points stables. Par projection sur une droite ne

passant pas par p
m:Py— {p} = P,

on voit que l'ouvert U, est isomorphe a ’espace de modules HiggsPl(c)
des «paires de Higgs» (G,yp) oi G est un fibré sur Py de rang c; et de
caractéristique d’Euler-Poincaré x, et ¢ : G — G(1) un morphisme de
fibrés ; ces paires sont soumises a la condition de stabilité suivante : pour
tout sous-fibré G' C G tel que ¢(G') C G'(1) on a u(G') < u(G).

L’identification s’obtient en associant au faisceau F l'image directe G =
7.«(F) ; le morphisme ¢ provient de la structure de module sur U, contenu
du fait que U, s’identifie & ’espace total du fibré normal &p (1) de la droite
P,. On a donc

H(F) = H'(G)

de sorte qu’il suffit de vérifier le méme énoncé pour I’espace des paires de
Higgs stables. Considérons la sous-variété localement fermée V¢ des classes

d’isomorphisme de paires de Higgs stables (G, ) ou G est donné par
G = Dicz0(1)"™

ou les r; sont des entiers fixéds > 0. Ces sous-variétés, appelées strates,
sont en nombre fini et recouvrent 'espace de modules Higgsp (c). Si
Hom®(G, G(1)) est 'ouvert de Hom(G, G(1)) des morphismes ¢ définissant
une paire stable, alors ’action naturelle par conjugaison du groupe PAut(G) :
Aut(G)/C* est libre et le morphisme

Hom*(G,G(1)) » Vg

est un quotient géométrique de Hom’(G, G(1). Il en résulte que

dim Vg = dim Hom*(G, G(1)) — dim Hom(G,G) + 1

= E T,'Tj

§<i+l
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Par suite la codimension de Vg est

el — Z rirj = Z ;.
i<itl i>it1
On vérifie facilement que la stabilité d’une telle paire de Higgs (G, )
entraine que le spectre de G, c’est-a-dire ’ensemble des ¢ € Z tels que r; # 0,
est connexe. On dit que G est rigide si ce spectre est connexe et réduit au
plus & deux points; il revient au méme de demander que Ext'(G,G) = 0. Un

tel fibré est déterminé par son rang et sa caractéristique d’Euler-Poincaré.

Supposons d’abord x # 0.

Les variétés déterminantielles sont des réunions de strates. Dans le cas
ol G est rigide, Vg est un ouvert qui ne rencontre aucune des variétés
déterminantielles étudiées ; la seule strate Vg de codimension 1 correspond
au cas ol le spectre de G est formé de 3 points consécutifs (¢ — 1,4,7 + 1)
et ou l'on a r;—; = riy1 = 1. Une telle strate ne peut rencontrer les variétés
déterminantielles étudiées que si i = —1; mais une telle strate n’existe que

si x = 0. Ceci démontre (i).

Supposons maintenant xy = 0.

Alors la variété déterminantielle & définie par la condition H!(G) # 0 est
le schéma des zéros d’une section du fibré inversible correspondant a Am(1) ;
c’est une réunion de strates de codimension > 1 : par suite, cette section
n’est pas identiquement nulle. Le schéma ¥ contient comme ouvert partout
dense la strate Vg ol G est donné par G = 6 @ 6°1~2(—1) @ 6(—2). Pour
voir que ¥ est intégre, il suffit de constater que la différentielle de Petri en

un point s de cette strate correspondant a la paire de Higgs (G,p) €
T,Higgs(c) — L(H*(G),H'(G))
est surjective.

Lemme 3.13. — Soit (G, p) une paire de Higgs stable. Considérons le

compleze K ¢ 2 termes
0 — Hom(G, G) — Hom(G, G(1)) — 0

ot la différenticlle est donnée par v — pu — up. L’espace tangent

Y

de Zariski T;Higgs(c) au point s correspondant & (G,y) s’identifie d
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Uhypercohomologie H'(K) du compleze K. En particulier, on a une suite

eracte naturelle
Hom(G, G(1)) — T,Higgs(c) — Ext'(G,G) = Ext'(G,G(1)) — 0.

Ce lemme est une conséquence de la construction de ’espace de modules
des paires de Higgs. La différentielle de Petri est bien entendu la fleche
composée

TsHiggs(c)
l N\
Ext'(G,G) — L(H°(G),H(G))
ot la fleche horizontale est 'accouplement naturel. Il résulte du lemme ci-
dessus que si Ext'(G,G(1)) = 0, la fleche verticale est surjective : c’est le
cas en un point s de la strate de codimension 1, et dans ce cas la fleche
horizontale est un isomorphisme. Par suite, le diviseur T est génériquement

lisse, et irréductible donc intégre. Ceci achéve la démonstration. o

3.6. Fin du calcul, quand c est de dimension d > 1.

Sous les hypothéses du théoréme, 1’espace de modules n’est pas réduit a

un point, donc < ¢*,¢ >< 0. Soit P le polynéme de Hilbert de ¢, défini par
P(m)=<¢,(1-h)"™>.

Puisque la dimension de ¢ est > 1, ce polynéme est de degré 1 ou 2, et
prend des valeurs < 0. C’est évident si dimec = 1, et résulte par exemple
de la formule donnant < c¢*,¢ > (cf. §3.1) quand dime =2 . On peut donc
quitte & remplacer ¢ par c¢(m) pour un entier m convenable, supposer que
g > —3,P(0) >0,P(—1) > 0 et P(—2) < 0. On désigne alors par U l'ouvert
de Mpz(c) correspondant aux points représentant des faisceaux polystables
F tels que H' (F) = HY(F(—1)) = H*(F(-2)) = 0. Soit K; un espace vectoriel
de dimension |P(—:)|. On désigne par Q* le fibré universel de rang 2 sur P,
noyau du morphisme d’évaluation Ho(ﬁpz(l)) ® 0p, — Op,(1). La suite
spectrale de Beilinson montre que si un faiscean polystable F représente
un point de U, le faisceau F est le conoyau d’un morphisme génériquement
injectif

Y=K:@NQ8Ki®Q =¥ =Ko ® Op,
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Réciproquement, considérons I'ouvert .# C Hom(%',#’) des morphismes
s : ¥ — W injectifs en dehors d’un nombre fini de points quand d = 2, et
génériquement injectifs quand d = 1. Le conoyau %, d’un tel morphisme
est alors pur de dimension d d’aprés le critére de Serre. Il est facile de voir,
en utilisant le fait que le fibré Hom(¥,#) est engendré par ses sections,
que le complémentaire de .# est de codimension > 2 dans ’espace vectoriel
de tous les morphismes.

Considérons d’autre part 'ouvert #*° de .# des morphismes s dont le
conoyau %, = coker s est semi-stable et tels que le gradué de Jordan-Holder
appartienne a l'ouvert U. On obtient une famille universelle paramétrée par

M ®° et par suite un morphisme
T M =T

qui associe & s le point défini par le faisceau &F,. Sur #°°, le groupe
G = Aut(?) x Aut(#') opere par conjugaison; la famille universelle &
est aussi munie d’une action de G, et le morphisme 7 est équivariant pour
cette action. Cette action sur . se factorise en fait au groupe G = G/C*

quotient de G par son centre.

Lemme 3.14. — (i) Le morphisme = fait de Uouvert U un bon quotient
de M°° par Paction de G.

(ii) Sous une des hypothése suivantes

—d=1,etc1 >3,

—d=2 et b(c) <0,

le complémentaire de A *° dans A est de codimension > 2.

Ce lemme généralise un énoncé analogue obtenu dans [16] quand c est de
dimension d = 2. L’assertion (i) repose sur les propriétés de transitivité des
bons quotients, en se ramenant au schéma de Hilbert. L’assertion (ii) repose
sur le fait que l'on peut stratifier le complémentaire de 'ouvert des points
semi-stables en utilisant les filtrations de Harder-Narasimhan; on peut
calculer la codimension des strates de Harder-Narasimhan dans une famille
compléte de faisceaux purs. C’est le cas pour la famille & paramétrée par
. Pour obtenir I’énoncé, on considére 'ouvert .#° C .#*° des points s

tels que &, soit stable; sous l'une des hypotheses (ii) le complémentaire
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de cet ouvert est aussi de codimension 2 dans l'ouvert de .# des points

semi-stables.

Lemme 3.15. — Considérons la famille universelle & de faisceauz de
classe ¢ paramétrée par M.

(i) Le morphisme canonique
A# : K(P;) — Pic®(.#)

est surjectif ; c’est un isomorphisme si P(—1) > 0.

(ii) Cet morphisme induit un morphisme surjectif
ct = Pica(.//{).
Cet épimorphisme est un isomorphisme si P(—1) > 0.

L’assertion (i) résulte du fait que &*(.#) = C*, et que Pic(.#) = 0.
Ainsi, le groupe Pic®(.#) s'identifie au groupe Char(G). Ce groupe est Z?
ou Z3 suivant que P(—1) = 0 ou P(—1) # 0. Il suffit de constater que I'image
de la base de K(P3) donnée par les classes e_; des fibrés inversibles &(—1)
pour : = 0,1,2 par A g fournit un systeme de générateurs de Char(G), ce
qui est évident. Pour l’assertion (ii), on observe que ’on a un diagramme
commutatif

K(P;) — Char(Q)
oN e
z

dans lequel la fleche (1) est donnée par u —< c,u > et la fleche verticale
est induite par I'inclusion du centre C* — G. Ceci se vérifie immédiatement
sur les éléments de la base e_;. Le noyau de (1) est par définition ct et le
noyau de (2) est le groupe Char(G). D’otl ’énoncé.

Fin de la preuve du théoréme 3.10

Considérons le diagramme
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De la propriété universelle de Apm(u), il résulte que ce diagramme induit un
diagramme commutatif

A —_
ct et Pic® ()

| l®

@ =
PicM) - Pic(U) —  PicS(.#*)

Surjectivité

On sait d’apres le lemme précédent que le morphisme A g est surjectif,
et le morphisme (3) est évidemment surjectif. De plus, le fait que U est un
bon quotient de .#£°° implique que la fleche (4) est injective. Il en résulte
que (4) est un isomorphisme.

— Si P(—1) # 0, il résulte de Brill-Noether que le complémentaire de U
est de codimension > 2, donc, M étant normale, la fleche p est injective.
C’est donc un isomorphisme, et par suite AMm est surjective.

— Si P(—1) = 0, alors ker Az = (e_1) et le noyau de p est justement
Am(e—1) d’apres le théoreme 3.12. On a alors un diagramme commutatif de
suites exactes

0— (e—1) = ¢t = ct/lesy) —0

®) | | l®
0— JXm(e—1) — Pic(M) — Pic(U) —0
dans lequel les deux fleches verticales extrémes (5) et (6) sont surjectives,

donc aussi la fleche Ay

Injectivité

Ici on doit se placer sous I'une des hypothéses

—d=1letec; >3

—d=2et é(c) <0.

Sous 'une de ces hypotheses, le lemme 3.14 a montré que .#°° est un
ouvert de .# dont le complémentaire est de codimension > 2 : dans le
diagramme ci-dessus la fleche (3) est alors un isomorphisme. Ceci entraine
linjectivité de Am si P(—1) # 0. Si P(—1) = 0, la fleche (6) est un
isomorphisme et on est ramené a vérifier que le fibré Am(e—1) n’est pas
trivial. Ce fibré posséde une section canonique : il s’agit donc de vérifier
qu’il existe un faisceau semi-stable F de classe ¢ tel que H'(F(—1)) # 0. On

renvoie & [16] ou [17] pour le cas ol d = 2. Dans le cas d = 1 c’est évident :
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il suffit de prendre sur une courbe lisse C de degré ¢; un point L du diviseur

théta, et de considérer le faisceau F = L(1).

Les cas particuliers

Sous I’une des hypothéses

—d=1letc, L2,

—d=2et 8(c)=0
on a défini une classe exceptionnelle a associée a c : ona alors < a,¢ >= 0. Si
E, est un fibré exceptionnel de classe a, pour tout famille plate de faisceaux
semi-stables & de classe ¢ paramétrée par une variété algébrique S les images
directes Ripr1.(¥4 ® E,) sont en fait toutes nulles, et par suite Ag(a) = 0.

Par suite, a appartient au noyau de Am. Ainsi, AM induit un épimorphisme
ct/(a) = Pic(M)

Le premier membre est un groupe cyclique infini ; puisque M est une variété

projective, ¢’est un isomorphisme.

Factorialité locale
11 suffit de remplacer dans la démonstration de la surjectivité ci-dessus
M par louvert des points lisses M.y, de M, 'ouvert U par 'ouvert U,
des points lisses de U et .#°° par 'image réciproque .#; de Uyey. Le
morphisme .//{,:"e“’g — Uyeqy est encore un bon quotient. L’argument utilisé
L

ci-dessus montre que le morphisme ¢~ — Pic(M;y) est surjectif, et par

suite le morphisme de restriction
Pic(M) — Pic(Myy)

est surjectif.

4. Systémes cohérents

On introduit dans cette section ’espace de modules Systy (c) des systémes
cohérents a—semi-stables de classe ¢, et on définit pour cet espace un

opérateur \g analogue a I’homomorphisme Am de la section 2.

4.1. Motivation
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Soit n un entier > 2. Soit M, ’espace de modules des faisceaux semi-
stables de rang 2 et de classes de Chern ¢; = 0,cs = n sur le plan projectif
P;. Comme on I’a vu, c’est une variété projective irréductible de dimension
4n — 3. D’aprés le théoreme de Grauert-Miilich, la restriction d’un tel
faisceau F & une droite générique £ est le fibré trivial de rang 2. Une droite de
saut pour un tel faisceau est une droite £ telle que la restriction F|, n’est pas
triviale : les droites de saut de F sont donc celles qui satisfont a la condition
cohomologique A!'(F(—1)|¢) # 0. Si on considére la variété d’incidence D

des couples (droites, points), munie des projections canoniques

p 5B p,
P"ll
P;

Pensemble des droites de saut est le support du faisceau cohérent sur le plan
projectif dual © = R!pri.(pr3(F(—1)). Pour p = —1 et —2 les nombres de
Hodge h?(F(p)) sont nuls si ¢ # 1 et on a A!(F(—1)) = h}(F(-2)) = n;la
résolution standard 0 — &(—1,—1) - 6 — 6p — 0 de D dans P} x P,
montre alors que ce faisceau O est le conoyau du morphisme canonique sur
P;

H!(F(~2)) ® Ops(~1) — H'(F(-1)) ® Op:.

Ainsi, © est un faisceau pur de dimension 1 dont le support schématique
est une courbe dont I’équation est le déterminant du morphisme . Cette
courbe 9 de degré n est appelée courbe des droites de saut de F.
L’application qui associe a la classe de F la courbe 4r définit un morphisme

Fr qp:
M, — |Op; (n)|

On sait que le morphisme v est génériquement fini sur son image, et que
cette image contient des courbes lisses [1] . En fait, sur 'ouvert des classes
de faisceaux localement libres, ce morphisme est & fibres finies [13] . Pour
n = 2, c’est un isomorphisme; pour n = 3, il est surjectif et de degré 3.
Pour n > 4, la dimension du systéme linéaire Iﬁp;(n)l devient supérieure
adn—3.
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Probléme
(i) Le morphisme v est-il de degré 1 sur son tmage pour n > 4?7

(ii) Quel est le degré de limage de 4?7

1l est facile de voir que v*(€(1)) = 2, ot 2 = AM(—h + h?) est le fibré
déterminant de Donaldson, associé & la classe de —G¢(—1) = —h + h? dans
K(P3). Il en résulte si la réponse a la question (i) est affirmative, le degré

de 'image est donné par 'intégrale de Donaldson

n-alP2) = [ (a(@)

Nous n’avons pas de réponse générale a ces questions. Pour n = 4, 'image
de My est une hypersurface ¥ C P4 appelée hypersurface des quartiques
de Liiroth : nous verrons dans la section 5 que dans ’ouvert des quartiques
lisses, cette hypersurface correspond aux quartiques qui sont circonscrites a

un pentagone, ce qui est la définition historique des quartiques de Liiroth.

Théoréme 4.1. —
(i) Le morphisme v = My — Imy est de degré 1.
(ii) L’hypersurface des quartiques de Liroth est de degré 54.

L’assertion (ii) a aussi été obtenue par une voie différente des notres
par A. Tyurin et A. Tikhomirov [26] . Récemment, un calcul plus direct
de Vinvariant de Donaldson ¢,3(P3») a été mené a son terme par Wei-Ping
Li et Zhenbo Qin [18] . Nous nous limiterons ici a des indications sur la
démonstration de ’assertion (i) ; cette assertion nous semble la plus délicate
et nécessite une description précise de l’espace de modules My. On peut
construire [12] une transformation birationnelle My— — S sur la variété
S des systémes linéaires de degré 5 et de dimension projective 1 sur les
coniques lisses du plan projectif : en effet si F est un fibré stable générique
de rang 2, de classes de Chern (0,4), on a h°(F(1)) = 2; le déterminant du

morphisme d’évaluation
ev: HO(F(1)) ® op, — F(1)

est non nul et définit une conique lisse C. Le conoyau G = coker ev

est alors un faisceau inversible de degré —1 sur C muni d’un sous-espace
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vectoriel I' C Ext'(G, Op,) = HO(MI(G,ﬁpz)) de dimension 2. Le
faisceau G* = Extl(G,ﬁpz) est un fibré inversible de degré 5 sur C.
Réciproquement, la donnée de la paire (I';G*) permet de reconstruire F.
Malheureusement, I’étude de la situation générique n’est pas suffisante pour

obtenir le résultat attendu sur le morphisme .

Probléme
Compactifier la variété des systémes linéaires S ci-dessus et étendre la

correspondance birationnelle décrite ci-dessus.

C’est I’étude de cet exemple qui nous a incité en 1990 a introduire la
notion de systéme cohérent semi-stable dans un contexte trés général; il se
trouve que cette notion est utile dans d’autres situations. Notamment, elle
a déja été utilisée sur les courbes sous le nom de paires semi-stables par
d’autres auteurs : S. Bradlow, A. Bertram, O. Garcia-Prada, M. Thaddeus
(cf. par exemple [24]), N. Raghavendra et P. A. Vishwinath [22], et sous le
nom de paires de Brill-Noether par A. King et P. Newstead [11]. Toutefois,
meéme sur les courbes, on peut donner une notion de semi-stabilité différente
de celle qu’ont introduite ces auteurs, et qui s’avere elle aussi utile ; comme
illustration, nous donnerons par exemple une variante du calcul de Drézet et
Narasimhan du groupe de Picard des espaces de modules de fibrés vectoriels

semi-stables de déterminant fixé sur les courbes.

4.2. L’espace de modules des systémes cohérents

Soit X une variété algébrique projective et lisse de dimension n.

Définition 4.2. — Un systéme cohérent (I',F) de dimension d sur X
est la donnée d’une paire formée d’un faisceau algébrique cohérent F de
dimension d sur X, et d’un sous-espace vectoriel de I’espace vectoriel HO(F)
des sections de F.

Un morphisme f : (I''F) — (I',F') est un morphisme de faisceauz
cohérents F — F' tel que f(I') C IV,

Un systéme cohérent (I',F) est appelé structure de niveau si F est de

dimension n et 3i dimT = rg(F).

On obtient ainsi une catégorie additive.
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Définition 4.3. — Un morphisme de systémes cohérents f : (I',F) —
(T',F') est appelé strict si f(T') =T' NH(Imf).

La notion d’image, de noyau et de conoyau d’un morphisme strict de
systémes cohérents est définie sans ambiguité.

On se fixe un polynéme « strictement positif & coefficients rationnels.
Etant donné un systéme cohérent (I', F) on désigne par r la multiplicité de

F; on appelle polynéme de Hilbert réduit de (I, F) le polynoéme

mI’

di
P F) = « + pF.

Définition 4.4. — On dit qu’un systéme cohérent (I',F) de dimension
d est a-semi-stable (resp. a—stable) si
(1) le faisceau F est pur de dimension d;
(ii) pour tout sous-faisceau cohérent F' C F, de multiplicité 0 < r' <r on g,
en posant T =T N H(F')

pr ) S o) (resp. <).

Dans la catégorie des systémes cohérents a—semi-stables de méme
polynome de Hilbert réduit fixé, les morphismes sont stricts, et cette
catégorie est une catégorie abélienne. En particulier, les notions de filtra-
tions de Jordan-Holder, de gradué de Jordan-Hélder, et de S—équivalence
ont encore un sens. Un systéme cohérent est dit polystable s'il est somme

directe de systéme cohérents stables de méme polynéme de Hilbert réduit.

Exemples.

(i) Le systéme cohérent (0,F) est a—semi-stable si et seulement si le
faisceau F est semi-stable.

(i) Supposons que a soit un polynéme de degré > d. Un systéme cohérent
de dimension d est semi-stable si et seulement si F est pur de dimension d
et si pour tout sous-faisceau cohérent F/ C F de multiplicité 0 < ' < r on
a

dim’ r < dimT

et en cas d’égalité ppr < pr.
r

C’est la définition que nous avions adoptée dans [14] , article dans lequel

nous avions choisi pour polynéme « le polynéme de Hilbert px de &%.
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Lemme 4.5. — Soit (I'F) un systéme cohérent px—semi-stable de

dimension d. Alors 3i I' # 0, le conoyau du morphisme d’évaluation
ev: '@ O6x = F
est de dimension < d.

Cet énoncé résulte immédiatement de la définition, en ’appliquant au
faisceau cohérent F' image du morphisme d’évaluation. Il en résulte que
si (T',F) est un systéme cohérent px—semi-stable de dimension n, et si
T # 0, le morphisme d’évaluation est génériquement surjectif. En particulier

Pexistence d’un tel systéme cohérent semi-stable impose I'inégalité
dimT > rg(F).

(ii1) Soit (I',F) un systéme cohérent de dimension n; on suppose que
dimT =1 et rg(F) = 2. Un tel systéme cohérent est a—semi-stable si pour

tout sous-faisceau cohérent F' C F de rang 1 on a
a
r < —_—
PF S PR 5 deaX)

si T NHO(F') = {0}, et

o
;< —_——
PR 2 PP ™ 5 deg(X)

si ' ¢ H°(F'). Si on applique cette définition au sous-faisceau cohérent
engendré par le morphisme d’évaluation, on voit qu’un tel systéme cohérent

semi-stable ne peut exister que si
0 < a < 2deg(X)(pr — px)-

On a bien entendu un énoncé analogue pour la stabilité, en remplagant

les inégalités ci-dessus par des inégalités strictes.

Lemme 4.6. — Soit (I'F) un systéme cohérent de dimension n; on
suppose dimT =1 et rg(F) = 2. Si a est suffisamment petit, les assertions
suivantes sont équivalentes :

(1) le faisceau cohérent F est stable

(2) le systéme cohérent (T',F) est a—stable.
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Pour les grandes valeurs de «, on a aussi ’énoncé suivant :

Lemme 4.7. — On se place sous les mémes hypothéses, et on prend
a = 2deg(X)(pr — px). Alors le systéme cohérent (I',F) est a—semi-stable

st et seulement s: le conoyav G du morphisme d’évaluation
ev: ' O6x - F
est un faisceau cohérent de rang 1 sans torsion.

Lorsque X est une courbe, la notion de a—semi-stabilité coincide avec
celle des paires semi-stables introduites par des méthodes différentielles par
S. Bradlow, A. Bertram, O. Garcia-Prada,... et utilisées dans un cadre
algébrique par N. Raghavendra et P.A. Vishwanath [22] pour désingulariser
certaines sous-variétés de ’espace de modules des fibrés semi-stables et par
M. Thaddeus pour le calcul de la formule de Verlinde (cf. par exemple [24]).

Familles de systémes cohérents

Soit S une variété algébrique. On considére les projections canoniques

sxx I x
P"ll
S

On désigne par wx le faisceau canonique sur X, et par wsxx;s = pr3(wx) le
faisceau canonique relatif pour la projection pry. Si & un faisceau algébrique
cohérent S-plat sur S x X I'image directe pri4(&#) se comporte mal par
changement de base, sauf si les images directes supérieures sont nulles. Ceci
introduit quelques difficultés dans la définition des familles de systémes
cohérents. Pour cette raison, nous assimilerons un systéme cohérent sur
X & la donnée d’une paire (I', F') formée d’un faisceau algébrique cohérent F
sur X et d’un espace vectoriel quotient de ’espace vectoriel Ext"(F,wx). En
vertu du théoréme de dualité de Serre-Grothendieck, les espaces vectoriels
Ext™(F,wx) et HO(F) sont duaux, et cela revient donc an méme. Ceci

conduit a la définition suivante :

Définition 4.8. — Soit ¢ € K,pum(X) de dimension d. On appelle

famille de systémes cohérents sur X, de classe c, paramétrée par la variété
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algébrique S la donnée d’une paire (F,7), ov F est une famille S—plate de
faisceauzr algébriques cohérents sur X de classe c, et ¥ un faisceau localement

libre sur S quotient du faisceau cohérent Exty, (F,wsxx/s)-

En associant & S I’ensemble des classes d’isomorphisme de familles de
systémes cohérents a—semi-stables de classe ¢ sur X on définit un foncteur
contravariant S — §yitxya(c)(S) : ceci résulte du bon comportement
du foncteur METI(F,UJSxx /s) par changement de base. Examinons par
exemple la fibre au-dessus d’un point fermé s € S. Notons %, le faisceau

induit sur la fibre au-dessus de s.

Lemme 4.9. — Soit & un faisceau algébrigue cohérent S-plat sur S xX.

Alors pour tout point fermé s € S, on a un isomorphisme canonique
Extp,, (F,wsxx/s)s = Ext™(Fs,wx)

Ainsi, la donnée d’une famille de systémes cohérents (&, ¥’) paramétrée
par S fournit en chaque point s € S un espace vectoriel quotient ¥; de
Ext™(%,,wx) et donc un sous-espace vectoriel 7;* de H%(&,); on obtient

alors un systéme cohérent (7,*, #;) de dimension d.

Théoréme 4.10. — Soit P un polynéme. La famille des systémes

cohérents a—semi-stables (I, F) tels que Pp = P est imitée.

Théoréme 4.11. — Soit ¢ € Kpum(X) une classe effective de dimension
d. Il existe pour le foncteur §yitx’a(c) un espace de modules grossier,
Systx’a(c). C’est une variété projective dont les points fermés correspondent
auz classes de S—équivalence de systémes cohérents semi-stables de classe

C.

Bien entendu, on a une décomposition en réunion disjointe d’ouverts
SyStX,a(c) = H SyStX,a(ca k)
k

ol Systx ,(c, k) désigne la composante des systemes cohérents (I',F) de
classe ¢ tels que dimI' = k. Dans le cas a@ = px, on notera plus simplement

Systx(c) ’espace de modules ci-dessus.
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La démonstration de ces deux énoncés est donnée dans le cas ol @ = py
(ou ce qui revient au méme dega > d) dans [14]. Dans le cas général
énoncé ci-dessus, on a seulement besoin de quelques variantes de cette
démonstration. Soit P le polynéme de Hilbert, défini P(m) =< ¢, (1 —
h)™™ >. On considére comme au §2.2 pour un entier m suffisamment
grand, un espace vectoriel H de dimension P(m), et le schéma de Hilbert-
Grothendieck R = Hilb(B, ¢) des faisceaux cohérents de classe ¢ quotients
du fibré vectoriel B = H ® 6x(—m). Ce schéma parameétre un faisceau
quotient universel &, et on peut introduire la grassmannienne relative de

Grothendieck
6= Grra.ss(Mz,.1 (F,wrxx)) = R

dont les points correspondent aux paires (s, V), oi s € R et ol V est un
espace vectoriel quotient de Ext™(F;s,wx). Sur & le groupe GL(H) opére
de maniere naturelle. Soit &°° 'ouvert des points (s,V) satisfaisant aux
conditions suivantes

— le morphisme canonique H — H°(%;(m)) est un isomorphisme;

— le systéme cohérent (V*, F;) est semi-stable.
Alors 8°° est un ouvert GL(H)—invariant qui possede alors un bon quotient :
c’est la variété de modules attendue. Soit A, I’espace vectoriel des sections
H%(6x(m)). Comme nous l’avions pressenti dans I'introduction de [14] , cet
énoncé résulte de I'identification de cet ouvert &°° avec un ouvert de la
variété produit

P = Hilbx(c) x Grass(H* @ Am),

d’un choix convenable d’une polarisation sur ce produit, et du calcul des
points semi-stables relatifs a cette polarisation pour ’action GL(H) de
B. Le schéma de Hilbert Hilb(B,c) étant polarisé par le plongement de
Grothendieck du schéma de Hilbert Hilb(B,c) dans la grassmannienne
Grass(H @ A¢—m,P(£)) des espaces vectoriels quotients de dimension P(¢),
pour £ > m suffisamment grand, la polarisation qui convient ici sur la
composante définie par dimI' = k est un multiple entier > 0 de 1’élément

de Pic(*B) ® Q défini par
= O(dim H + a(m)k, a(m)P(£)).

Nous ne donnerons pas ici la démonstration détaillée, qui s’appuie comme
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dans [14] sur un critére de semi-stabilité des systémes cohérents comparable
au criteére 4.13 de [14] .

Etude infinitésimale et extensions

Considérons deux systémes cohérents (I, F') et (I', F) sur X. Pour toute
résolution injective ¢ : F — R’ on considére le complexe H°(R')/T' défini
par 0 — H°(R%)/T' — H°(R') — H°(R?) — .... On a alors un morphisme

naturel de complexes d’espaces vectoriels
¢ : Homey (F',R") = L(TV,H*(R")/T)

ot L(T',H(R")/T) est le complexe des applications C—linéaires; en con-

sidérant le mapping c6ne de  on obtient une suite exacte de complexes
0 — SL(I",H%(R")/T') = M*(p) — Homgy (F',R") — 0

ol la lettre S indique ici la suspension, c’est-a-dire le complexe décalé d’un

degré vers la droite. On pose
Ext?((T",F'), (T, F)) = H'(M'(¢))

Visiblement cet espace vectoriel ne dépend pas du choix de la résolution R-,

et on a une suite exacte longue

0 = Hom((I", F'), (T, F)) = Hom(F',F) — L(I", H*(F)/T') -
Ext!((I',F"), (T, F)) — Ext'(F',F) — L(I',H'(F)) — ...

La proposition suivante étend aux variétés de dimension quelconque un
énoncé de Thaddeus [24] :

Proposition 4.12. — Soit (I',F) un systéme cohérent a—stable de
classe c, et p le point qu’il définit dans l’espace de modules Systy ,(c).

(i) Si Ext*((T,F),(I,F)) = 0, Pespace de modules Systy ,(c) est lisse
au voisinage du point p. Cette condition est satisfaite en particulier si
Ext?(F,F) = 0 et si la fliche naturelle Ext'(F,F) — L(T',H)(F)) est
surjective.

(ii) L’espace tangent de Zariski en p est isomorphe d Ext'((T,F), (T, F)).
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Ces espaces vectoriels interviennent aussi pour classer les extensions
strictes. On a par exemple ’énoncé suivant, qui précise le lemme 4.21 de
[14] :

Proposition 4.13. — L’ensemble des classes d’isomorphisme d’eztensions
strictes

0— (I'",F) - (I,F) =» (I'",F") = 0
est isomorphe & lespace vectoriel Ext!((T",F") (I',F')) et cet isomor-

phisme est compatible avec Uaction naturelle du groupe Aut(I',F') x
Aut(T", F").

4.3. La notion duale

Définition 4.14. — Un cosystéme cohérent de codimension d sur X est
la donnée d’une paire (I',F) ot F est un faisceau algébrigue cohérent de

dimension d, et T C Ext® 4(F, 6x) un sous-espace vectoriel.

Etant donné un tel cosystéme cohérent, on introduit encore la notion de

polynéme de Hilbert réduit pour un cosystéme cohérent (I',F) en posant

dimT
b, F) = - px — PF.
ou 7 est la multiplicité de F.
Définition 4.15.-— Un cosystéme cohérent de dimension d est dit semi-

stable si

— le faisceau F est pur de dimension d

— pour tout faisceau gquotient F — F' pur de dimension d on a , en
posant TV = I' N Ext'(F', 6%)

pa Fy < POLF)

On pourrait naturellement songer a remplacer px par un polynéme positif
quelconque « dans la définition ci-dessus; cependant la notion que nous
venons de décrire sera suffisante pour les applications que nous avons en vue.
Ici encore la catégorie des cosystémes cohérents semi-stables de polynéme
de Hilbert réduit fixé est abélienne, et on peut définir la notion de filtration
de Jordan-Holder, et de S—équivalence.
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Familles de cosystémes cohérents

Soit S une variété algébrique. On considére a nouveau le diagramme

pr2

SxX — X

pr l

S

Définition 4.16. — Soit ¢ € Knum(X) une classe effective de dimension
d. Une famille (plate) de cosystémes cohérents de classe ¢ paramétrée par
S est la donnée d’une famille plate F de faisceauz algébriques cohérents

de classe c, paramétrée par S et d’un fibré vectoriel quotient R%pri.(F @

wsxx/s) = V.

Au-dessus de chaque point s € S, une telle famille définit par dualité
un sous-espace ¥;* C Ext"_d(a@s, Ox) c'est-a-dire un cosystéme cohérent.
Si on associe & la variété S l’ensemble des classes d’isomorphisme de
cosystémes cohérents semi-stables de classe ¢, on obtient encore un foncteur

contravariant noté Cosyst, (c).

Théoréme 4.17. — Soit P un polynéme. La famille des cosystémes

cohérents (I',F) tels que Pp = P est limitée.

Théoréme 4.18. — Soit ¢ € Kpym(X) une classe effective de dimension
d. On se place sous l'une des hypothése suivantes :

—d=0,n—1oun

—d=1 et 6x(1) et wx sont numériguement liés.

Alors il existe pour le foncteur Cosyst, (c) un espace de modules grossier,
noté Cosysty(c), dont les points sont les classes de S—équivalence de

cosystémes cohérents semi-stables de classe c.

Naturellement, on a encore une décompostion en réunion disjointe

d’ouverts
Cosystx(c) = H Cosystx (¢, k)
k

ou Cosysty(c, k) désigne ’ouvert correspondant aux cosystemes cohérents
(T, F) tels diimT' = k.
Ces deux énoncés sont démontrés dans [14] . Le théoréme 4.18 devrait

étre vrai pour tout d; mais faute de motivation nous ne ’avons vérifié que
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sous les hypotheses énoncées, en nous ramenant, au moins dans les cas les

plus importants, au cas des systémes cohérents.

Relations avec les systémes cohérents
(i) Pour d = 0, ou d = 1, si (I, F) est un cosystéme cohérent semi-stable,

le faisceau F est de Cohen-Macaulay. La classe dans Knum(X)
o(Ext™4(F, Ox)) = (—1)"~4c"
est alors déterminée par la classe c de F, et
Ext" " 4(F, 6x) ~ H*(Ext"~4(F, 6x)).

Ainsi, un tel cosystéme cohérent de classe ¢ définit un systéme cohérent
de classe (—1)"~9c*, et réciproquement; si d = 0 ou si d = 1 et Ox(1)
et wx numériquement liés, on constate sans difficultés que les notions de
semi-stabilité coincident (en prenant a = px). Ceci passe aux familles. On

obtient ainsi

Théoréme 4.19. — Soit ¢ € Kpum(X), satisfaisant ¢ 'une des condi-
tions suivantes :

— ¢ est de dimension d = 0;

— c est de dimension d =1 et Ox(1) et wx sont numériguement liés.

Alors on a un isomorphisme canonique
Cosystx(c) =~ Systx((—1)""%4c*)

Cet énoncé ne s’étend pas au cas d > 1, car F n’est pas obligatoirement
de Cohen-Macaulay, et la classe M‘(F, Ox) peut étre non nulle pour
i##n—d.

(ii) On considére une structure de niveau (I', F) semi-stable relativement
a a = px. Ainsi, F est un faisceau sans torsion, dont on désigne par r
le rang : on a donc dimI' = r; on suppose que la classe ¢ de F est # r.
Considérons le morphisme d’évaluation ev : I' ® &x — F alors :

— le morphisme ev est génériquement injectif ;

— soit © le conoyau de ev. Alors si © n’est pas nul (ce qui signifie

que ¢ # r) c’est un faisceau pur de dimension n — 1, de classe ¢ — r dans
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Knum(X). De plus, la propriété de semi-stabilité implique Hom(F, 6x) = 0,

et par application du foncteur Hom(—, 6x) a la suite exacte
0-T6O6Ox-F—-0-=0

on obtient une application linéaire injective : T'* — Ext'(©, 6x). Ainsi,
I'image V de I'* définit un cosystéme cohérent de dimension n — 1, dont on
vérifie sans difficulté qu’il est semi-stable.

Réciproquement, la donnée d’un tel cosystéme cohérent semi-stable
(V,0), de classe © € Knpym(X) définit un élément canonique w €

Ext!(©,V* ® 6x) ce qui fournit une extension
0-V'®Ox =F =0 -0.

L’image de V* dans H(F) définit un systéme cohérent (T', F) de classe c # r.
On vérifie encore que le systéme cohérent (I', F') est encore px —semi-stable.
La correspondance obtenue s’étend aux familles, et fournit en fait sur les

espaces de modules un isomorphisme

Théoréme 4.20. — Soit ¢ € Kpum(X) de dimension n et rang r. La

correspondance décrite ci-dessus induit un isomorphisme
Systx(c,r) =~ Cosystx(c —r,T).

En conjuguant les deux énoncés ci-dessus, on obtient dans le cas des

courbes et des surfaces :

Corollaire 4.21. — Soit X une courbe ; si ¢ € Kpnum(X) de dimension

1 et de rang r on a un isomorphisme canonique
Systx(c,r) ~ Systx(c —r,1)

Corollaire 4.22. — Soit X une surface, telle que Ox(1) et wx soient

numériguement liés. Soit ¢ € Knum(X) de dimension 2 et de rang r. Alors

Systx(c,7) =~ Systx(r —c*,r)

4.4. Construction de fibrés inversibles sur Systy ,(c)
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On se fixe un polyndme a positif & coefficients rationnels. On se propose
d’étendre la construction du §2.3 aux espaces de modules de systémes
cohérents a—semi-stables. On pose K(X) = K(X) ® Z. Ce groupe sera

muni de la forme quadratique § définie par §(u,m) = x(u?) — m?2.

Pour
cette forme quadratique, I'orthogonal de (u,m) ne dépend que de la classe
de u dans Knum(X) et de m.

Soit S une variété algébrique, munie d’une action d’un groupe algébrique
G. Considérons une famille G—équivariante (&, 7) de systémes cohérents
de classe ¢ € Knpum(X), telle que rg(¥) = k : ceci signifie que la famille
de faisceaux & est munie d’une action de G au-dessus de ’action donnée
sur S, ainsi que le faisceau localement libre ¥ sur S et que le morphisme

canonique
Extp, (F,wsxxss) =V

est équivariant. On définit alors un homomorphisme de groupes abéliens
Agy: K(X) — PicG(S)

en posant Az v(u,m) = Ag(u) ® det ¥®™ pour (u,m) € K(X). Ce

morphisme posséde des propriétés fonctorielles analogues a celles de A& :

Lemme 4.23. —

(i) La formation du faisceau inversible A\ g y est compatible auz changements
de base G-équivariants.

(ii) Soit A un G—faisceau inversible sur S. Soit (F, V') une famille G—équiva-
riante de systémes cohérents de classe ¢ € Knum(X), telle querg (V') = k.
Alors dans Pic®(S) on o

Agoprs(a),y@ar (U, m) = Az,y(u,m) @ A®<o¥>—km
(iii) Etant donnée une suite ezacte stricte de familles G—équivariantes de

systémes cohérents paramétrées par S
0= (F, 7)Y (F,%)=(F",¥Y")=0

on a Ag y(u,m)=Ag y(u,m) @ Agn yn(u,m) dans PicG(X).
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On peut maintenant appliquer cette construction a la composante &°(k)
de l'ouvert &° (cf. §4.2 ) des paires (s,V) telles que dimV = k. Ce
schéma est muni d’une famille universelle de systémes cohérents a—semi-
stables (&, %), équivariante pour I’action de G = GL(H), ce qui fournit un

homomorphisme
Az v : K(X) = Pic®(8*(k)).

On désigne par H le sous-espace vectoriel de K(X) ® Q engendré les

éléments
& =((1-h)",~a(i))
et par (c,k)! lorthogonal de (c,k) pour la forme quadratique §. Par

application du lemme de descente de Kempf, Drézet et Narasimhan, on

obtient comme au §2.3 :

Théoréme 4.24. — Soit ¢ € Kqum(X) et k un entier > 0.
(i) L’homomorphisme A g,y : HtLN(c, k)t — Pic®(&*°(k)) se factorise

de maniére unique suivant le diagramme

Hiin(c, k)t —  PicG(8*(k))
A\, T
Pic(Systx (¢, %))
(ii) Soit (u,m) € HLLN(c, k)L; le fibré inversible ainsi défini As(u,m) €
Pic(Systx o(c, k)) est caractérisé par la propriété universelle suivante : pour
toute famille (F', V") de systémes cohérents semi-stables de classe c telle

que rg V' = k, paramétrée par une variété algébrique S, on a dans Pic(S)

/\(.QFI"I/I)('U:a m) = fz‘g,,«y:)(/\s(u, m)),

ot fig vy : S — Systy ,(c,k)) désigne le morphisme modulaire associé d

cette famille.

Soient ¢ € Kpym(X) une classe effective de dimension d, de multiplicité r,
et k un entier > 0. L’examen des systémes cohérents a—polystables montre
en fait que le fibré As(u,m) a un sens dans Pic(Systx ,(c, k)) dés que la
propriété suivante est satisfaite : (u,m) est orthogonal & tous les couples

(c', k') € K(X) satisfaisant aux conditions suivantes :
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(1) la classe ¢’ est effective de dimension d, de multiplicité r' =< ¢', h? >;
(2) I’élément de K(X) ® Q défini par 1(c, k) — L(c', k') est orthogonal &

H.

Dans le cas ol « est de degré > d, cette condition est équivalente &

! k kl

S_ZeHL & Z=2

roor ror
Ainsi, dans ce cas particulier A\s(u,m) a un sens dés que u € H1L et
(u,m) € (¢, k)L. En particulier, si X est une courbe ou le plan projectif, le
fibré inversible Ag(u,m) a un sens dans Pic(Systx(c, k)) dés que (u,m) €

(c,k)*.

5. Exemples et applications

Nous nous limitons ici & deux applications de la théorie des systémes
cohérents. La premiére application est une variante du calcul de Drézet et
Narasimhan du groupe de Picard des espaces de modules de fibrés vectoriels
de déterminant fixé sur une courbe. La seconde permet de comprendre la
structure de ’espace de modules des faisceaux semi-stables M, sur le plan
projectif, introduit au §4.1, et d’aborder ’étude du morphisme 7 qui associe
a la classe d’un faisceau F la quartique des droites de saut de F. Cette notion
de systéme cohérent est aussi utile sur des variétés de dimension supérieure ;
par exemple, sur l’espace projectif P3, elle permet d’étudier les composantes
irréductibles de I’espace de modules Mp (2;0,2,0) des classes de faisceaux
semi-stables de rang 2 et classes de Chern (0,2,0) (cf. [14]) .

5.1. Systémes cohérents sur une courbe.

Soit X une courbe projective lisse et irréductible de genre ¢ > 2. On se
fixe une classe ¢ € K(X) de dimension 0, et on considére 1’espace de modules
Systy(c,r) des systémes cohérents (T, F) de classe ¢ et tels que diimTI' = r.
Si ¢ est I'image de ¢ dans K,ym(X) = Z2, l'espace de modules Systy(c,r)
est la fibre au-dessus du point L = detc du morphisme déterminant
Systx(¢,r) — Pic(X). Comme on l'a vu dans la section précédente, le

morphisme

s : (¢,7)t — Pic(Systy(c,T))
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a un sens; si £ = degc, 'orthogonal de (¢,r) est donné par le groupe des

classes (u,m) € K(X) telles que
rg(u)l —mr =0

On posera 6 = pged(¢, ).

Si Z'(X) C K(X) désigne le groupe des classes 0—cycles de degré 0, cet
homomorphisme s’annule sur Z!(X) C (c,r)t.

Théoréme 5.1. — Soit r un entier > 1. Soit ¢ € K(X) de dimension 0
de degré £ > 2rg.

(1) L’espace de modules Systy(c,r) est une variété non vide, irréductible
et normale de dimension r(£—r)+1— g, lisse sur Pouvert des points stables.

(ii) Le morphisme ci-dessus
s : (c,r)t — Pic(Systx(c, 7))

est un épimorphisme de noyau Z'(X).

(iil) La variété Systy(c,r) est localement factorielle.

On pose L = detc, et on suppose désormais r > 1 et £ > 2rg. Pour
voir que cet espace de modules n'est pas vide, on considére les systémes
cohérents de la forme (T', &p), ou D est un diviseur obtenu comme schéma
des zéros d’une section de L. Autrement dit, soit P = P(H®(L)) le systéme
linéaire des sections de L, et ¥ C P x X le diviseur universel. On considere
l'image directe & = pri,(&x); c’est un faisceau localement libre de rang
£, qu’on identifie au faisceau des sections d’un fibré vectoriel A sur P; le
schéma A est en fait muni d’une structure de P—algebre. On considére la

grassmannienne relative des sous-espaces de dimension 7 :
Grass(r,A) —» P

Lemme 5.2. — Dans Grass(r, A) le complémentaire de l'ouvert des
systémes cohérents stables est de codimension > 2.

Cet énoncé ne serait pas vrai pour r = 1.

Sur Grass(r,A), le P—schéma en groupes des éléments inversibles A*

de A opére de maniére naturelle. Soit Grass’(r,A) 'ouvert des systémes
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cohérents stables. On a alors un morphisme A*-équivariant
7 : Grass®(r, A) — Systx(c,r)

dont I'image est un ouvert U non vide. L’'image U est en fait partout dense,

comme le prouve 1’énoncé suivant :

Lemme 5.3. — Dans Systy(c,r) le complémentaire de l'ouvert U des
classes de systémes cohérents stables de la forme (I, O6p), avec dimI’ = r

et ¢(Op) = c est de codimension > 2.

Ceci entraine l'irréductibilité ; la normalité résulte du fait que la com-
posante &°°(r) de 'ouvert °° utilisé dans la construction de Systy(c,r)
est une variété lisse. La lissité de 'ouvert des points stables résulte du fait
que sur 'ouvert & 'action du groupe GL(H)/C* est libre.

Pour terminer la démonstration il faut encore étendre & cette situation

relative ce qu’on a énoncé au §3.3.

Le groupe Pic?"/C" (Grass(r, A))
Soit S une variété intégre, et 7 : Y — S une S—variété intégre. Soit
G — S un schéma en groupes algébriques opérant sur Y, c’est-a-dire que

I’on a un S—morphisme
GxsY—=Y

induisant sur chaque fibre Y, une action du groupe G,. Dans cette situation
relative, les notions de bon quotient, de G—fibrés vectoriels, de fibrés
vectoriels G—invariants ont un sens.

Un morphisme croisé ¢ : G Xs Y — C* est un morphisme induisant au-
dessus de chaque point de S un morphisme croisé. Un G—morphisme croisé

principal est un morphisme croisé de la forme

R ACL)
(9, )_ ¢(x)

pour (g,2) € G xs Y, ol ¢ : Y — C* est un morphisme. On pose

HY(G, m.(63)) = {Morphismes croisés G xs Y — C*}

{Morphismes croisés principaux}
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Dans cette situation, on a encore une suite exacte
0 — HY(G, 7.(6%)) — Pic®(Y) — Pic(Y)© (%)

Définition 5.4. — Un caractére de G est un morphisme G — C*

induisant sur chaque fibre G, un caractére.

Les caractéres de G constituent un sous-groupe Char(G) du groupe des
morphismes croisés G xg Y — C*,

On applique ceci avec G = A*.

Les éléments non inversibles de A constituent une hypersurface irréductible
de A, plate au-dessus de P : en effet le noyau du morphisme d’évaluation
A ® O — Os définit un sous-fibré vectoriel K de rang ¢ — 1 de A xp ¥ et
I'image de K par le morphisme fini A xp ¥ — A est exactement le fermé des
éléments non inversibles. Comme le fibré L est engendré par ses sections,
¥ est irréductible (et lisse), et donc les éléments non inversibles constituent
une hypersurface Z irréductible de A. Le fibré inversible % sur A associé
a cette hypersurface provient d’un fibré inversible sur P et est muni d’une
section f qui ne s’annule pas sur A*, bien définie & une constante multi-
plicative prés. Si s — 1, désigne la section unité de A sur P, la section
s — f(1,) définit une section partout non nulle de 2, qui est donc un fibré
trivial. Ainsi, Z est défini par une équation scalaire f = 0, et si on impose
f(14) =1, alors f est un caractére de A*.

Lemme 5.5. — Soit Y — P une P—uvariété munie d’une action de A* ;
on suppose que par tout point de Y passe une section locale. Le groupe des

morphismes croisés p : A* xpY — C* est engendré par le caractére f.

En effet, soit ¢ : A* xp Y — C* un morphisme croisé. Soit p: A* — P la
projection canonique; si o est une section locale de Y au-dessus d’un ouvert
V de P, la fonction ¢ — ¢(g,0p(g)) définit une fonction réguliére inversible
sur W = p~!(V). Il existe donc un entier k£ € Z et une fonction u inversible

sur V tels que

w(9,9p(9)) = u(p(9))f*(9)
pour tout ¢ € W. De la définition des morphismes croisés, il résulte que la
fonction u doit étre constante et égale & 1. Par suite, ¢(g,y) = f¥(g) pour
tout (g,y) € A* xp Y. Ceci entraine le résultat. o
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En particulier, le groupe des caractéres Char(A*) est un groupe cyclique,
engendré par f. Sur un ouvert de P au-dessus duquel la fibre X, est lisse,

la fibre A est isomorphe & (C*)?, et le caractére f est de la forme

(617"'76[) L 61 §€
Il en résulte 1’énoncé suivant :

Lemme 5.6. — L’inclusion P x C* — A* induit un homomorphisme
injectif
Char(A*) — Char(P x C*) =17

On applique ce qui précéde & Y = Grass(r, A), sur lequel le groupe relatif
A* opére. L’action de A* sur Grass(r,A) se factorise a travers G = A* /C*.
Sur Grass(r,A) x X on dispose d’un systéme cohérent universel (&, %),
équivariant pour l'action de A*. Le caractére induit sur C* par le fibré
Aog,v(u,m) est donné par v — v<“*>~"™. D’aprés la suite exacte (*) et
le lemme 5.6 le groupe PicA™/€’(Grass(r, A)) est alors un groupe abélien
libre de rang 2, d’indice £/§ dans le groupe de Picard de Grass(r, A), et le

morphisme canonique gy, y induit un morphisme
Xos,v : (c,r)t — PicA™/€ (Grass(r, A))

qui est surjectif, et de noyau Z'(X); ceci résulte en effet de la formule
Ag(u) = 6p(< L*,u >), qu'on obtient en écrivant sur P x X la suite

exacte

0— ﬁ(—l)L* — Opxx — Ox — 0.

Fin de la démonstration du théoréme 5.1
Démontrons ’assertion (ii) : elle est semblable a celle du §3.6.
L’ouvert U est un quotient géométrique de Y par G. Compte-tenu de la

propriété universelle de Ag, le diagramme

Grass’(r,A) — Grass(r,A)

l

U —  Systx(e,r)
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induit un diagramme commutatif

Aoy, v el
(c,r)t — Pic”(Grass(r, A))
xs | lo
(3) ) (2)

Pic(Syst(c,r)) — Pic(U) — Pic®(Grass’(r, A))

Il résulte des lemmes 5.5 et 5.6, et de la suite exacte (*) que le groupe
Pica(Grasss(r,A)) s'identifie & un sous-groupe de Pic(Grass®(r,A)); il
résulte alors du lemme 5.2 que la fleche de restriction (1) est un isomor-
phisme. L’homomorphisme (2) est injectif parce que U est un bon quotient
de Grass®(r,A) et la restriction (3) est injective en raison du lemme 5.3,
compte-tenu du fait que Syst(c,r) est une variété normale. Donc Ag est un
morphisme surjectif de noyau Z!(X).

La factorialité locale se démontre par des arguments voisins, en se plagant

au-dessus d’un ouvert de Systy(c,r). o

Structures de niveau sur une courbe.

Du théoréme ci-dessus on déduit ’énoncé suivant :

Théoréme 5.7. — Soit ¢ € K(X) de dimension 1, de rang r > 1 et de
degré £ > 2rg.

(i) L’espace de modules Systy(c,r) des structures de niveau de classe ¢
est non vide, irréductible et normale de dimension r(¢ —7)+1—g; elle est
lisse en tout point stable.

(ii) Le morphisme Xs : (c,r)t — Pic(Systx(c,r)) est surjectif, et de
noyau Z'(X). En particulier, le groupe de Picard de Syst(c,r) est un groupe
abélien libre de rang 2.

(iil) C’est une variété localement factorielle.

Le corollaire 4.21 fournit en effet un isomorphisme Systy(c,r) ~
Systx(c — r,7) ce qui entraine évidemment les assertions (i) et (iii). Une

structure de niveau (&, 7)) de classe ¢ définit une suite exacte sur S x X
0V =F—-06-0

Alors le systéme cohérent associé est (0%, 7*) ou ©* est défini par ©* =
m‘(e, Osxx ). Pour u € K(X), posons u” = u* Q we.
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Lemme 5.8. — Pour (u,m) € K(X), on a dans Pic(S)
Aer,vo)(u,m) = Az v(—u’, x(u) — m).
En effet, d’aprés le lemme 2.1, et la suite exacte ci-dessus, on a
do(u) = Ag(u) ® det(¥)®X(¥),

D’autre part, par dualité de Serre, priy(0*(u)) = (prui(©(u")))* et par
conséquent Ae+(u) = Ae(—u"). Compte-tenu du fait que x(u”) = —x(u)
ceci conduit a la formule attendue. o

Dés lors, I'involution de K(X) définie par j : (u,m) = (—u", x(u) — m)
induit un isomorphisme (¢ —r,r)* — (c,r)* ; la propriété universelle de s

montre que le diagramme

(c—rr)t 2 Pic(Systx(c —r,7))

il L

(c,r)t 2 Pic(Systx(c,r))

dans lequel la fléche verticale de droite est induite par l'identification ci-
dessus, est commutatif. La premiére fléche horizontale est surjective de
noyau Z'(X) d’aprés le théoréme 5.1. Il en est de méme de la seconde, ce

qui achéve la démonstration. o
Le théoréme de Drézet et Narasimhan

On sait que ’espace de modules des fibrés semi-stables sur X de rang r
et de classe ¢ dans K(X) est une variété irréductible, normale, de dimension
(r? — 1)(g — 1). En un point représentant un fibré stable F, la variété
est lisse, et 'espace tangent de Zariski est isomorphe & Extll)(F,F), ol
Exty(F,F) = HY(X,Homy(F,F)) désigne I’espace vectoriel des classes de
cohomologie & valeurs dans le fibré des endomorphismes de trace nulle. En
ce qui concerne le groupe de Picard, le résultat ci-dessus permet d’obtenir

une variante de la démonstration du théoréme de Drézet et Narasimhan :

Corollaire 5.9. — (Drézet et Narasimhan (7] ) Soit ¢ € K(X) de
dimension 1, de rang r > 1. Alors

(i) Phomomorphisme canonigque

M et — Pic(Mx(c))
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est surjectif, et a pour noyau Z'(X); en particulier, le groupe de Picard
est un groupe cyclique.

(ii) la variété Mx(c) est localement factorielle.

En effet, on peut supposer que ¢ est de degré ¢ > 2rg, et considérer la
variété Systy(c,r) des structures de niveau ci-dessus. La vérification du

lemme ci-dessous est immédiate :

Lemme 5.10. — (i) Si (I',F) est une structure de niveau semi-stable de
classe ¢, on ¢ H'(F) = 0.
(ii) Dans Systx(c,r), le complémentaire de Uouvert des points stables est

de codimension > 4g — 2.

L’étude locale de Systx(c,r) (cf. proposition 4.12) montre que si s €
Systx(c,7) est un point stable représenté par un systéme cohérent (T',F),
I'application linéaire canonique T,Systy(c,r) — Extg(F,F) est surjective.
L’étude de la stratification définie par la filtration de Harder-Narasimhan de
F montre alors que le fermé des points représentant les structures de niveau
(T, F) telles que F soit instable est de codimension > 2. Soit V I'ouvert

complémentaire. On a alors un morphisme
7 :V = Mx(c).

Soit p € Mx(c) un point représenté par un faisceau stable F et V, la
fibre de 7 au-dessus de p. Elle s’identifie & un ouvert de la grassmannienne

Grass(r, H'(F)).

Lemme 5.11. — Le complémentaire de louvert V, dans la grassman-
nienne Grass(r, H’(F)) des sous-espaces de dimension r est de codimension
> 2.

En effet, pour tout diviseur effectif D C X de degré 2, on a H'(F(-D)) =
0 ce qui entraine que le morphisme canonique H*(F) ® 6p — F|p est
surjectif. Si on prend D lisse, il en résulte que dans Grass(r, H*(F)) les
points I tels que I' ® 6p — F|p soit de rang < r est I'intersection de deux
hypersurfaces irréductibles distinctes, donc de codimension 2. Ce fermé

contient le complémentaire de V,, ce qui prouve le lemme. o
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Le morphisme As induit un diagramme commutatif

0— ct = (er

)\Ml . )\sl l (1)

0— Pic(Mx(c)) — Pie(V) — Pic(V,)

oz

dans lequel la premiere ligne est exacte, et la seconde une O-suite. Il est
facile de voir que la fleche 7* est injective en revenant aux schémas de
Hilbert qui permettent la construction de ces espaces de modules. D’apres
le lemme 5.11 la fléche (1) est un isomorphisme ; on sait que la fléche Ag du
milieu est surjective, de noyau Z'(X). Il en résulte que Ay a méme noyau,
et qu’elle est aussi surjective. La propriété de factorialité locale de Mx(c)

résulte trivialement de celle de V. o

Soient x la caractéristique d’Euler-Poincaré de ¢, et § = pged(r, x). Soit
a un point de X. L’élément u € c' défini par fu = —r + ya fournit
un générateur de ct; le fibré inversible 2 = Am(u) associé est appelé

classiquement fibré déterminant.

5.2, Systémes cohérents sur P,
L’espace de modules Mp (2;1,2)

Considérons l'espace de modules Mp _(2;1,2) des faisceaux stables de
rang 2, de classes de Chern (1,2), sur le plan projectif, i.e. de classe
¢ =2+ h — h? dans K(P3). C’est une variété projective lisse de dimension
4. On sait que pour un tel faisceau stable h9(F) =0 pour g =1 et 2; de la

formule de Riemann-Roch on tire A%(F) = 2.

Lemme 5.12. — Soit (I',F) une structure de niveau de classe ¢ =
2+ h — h? sur le plan projectif. Alors (I',F) est un systéme cohérent stable

si et seulement si le faisceau F est stable.
On a alors un isomorphisme

Systpz(c, 2)~ Mpz(c)

en associant & la structure de niveau stable (T, F) le faisceau stable F sous-

jacent. Ona 2—c* = h+2h%. On a d’autre part I'isomorphisme du corollaire
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4.22
Systp,(c,2) ~ Systp_(h + 2h2,2);

le membre de droite est la variété des systémes linéaires de degré 2 et de
dimension vectorielle 2 sur les droites du plan projectif : cette variété est
évidemment isomorphe au schéma de Hilbert Hilb2(P2) des sous-schémas
finis de longueur 2 du plan projectif : il suffit en effet d’associer & un tel
systéme linéaire (T', 6¢(2)) sur la droite £ les zéros des quadriques singuliéres

de I' C H%(6,(2)). Ainsi, on obtient 'isomorphisme bien connu :

Corollaire 5.13. — Soit ¢ = 2+ h — k% On a un isomorphisme

canonique

Mp,(c) = Hilb*(P,)

L’espace de modules Mp (2;0,4)

On considére maintenant I'espace de modules M = Mpz(c) des classes de
S—équivalence de faisceaux semi-stables de rang 2, de classes de Chern (0, 4),
c’est-a-dire de classe ¢ = 2 —4h? dans K(P» ). C’est une variété irréductible
et normale de dimension 13 dont ’ensemble singulier est de dimension 8.

Si F est un faisceau semi-stable de classe c, on a h°(F(1)) =2 o0u 3. Si
h°(F(1)) = 3, on dit que F est spécial. Un tel faisceau est obligatoirement
stable. Dans Mp, (c) les points correspondant aux faisceaux spéciaux
forment une sous-variété lisse ¥ de codimension 3 qui évite I'ensemble

singulier.

Théoréme 5.14. — [14] On pose c = 2 — 4h?.

(i) Soit F un faisceau cohérent de classe c, et ' C HY(F(1)) un sous-espace
vectoriel de l’espace des sections. Alors la structure de niveau (T',F(1))
est semi-stable si et seulement si F est semi-stable.

(i1) Le morphisme canonique

Systpz(c(l), 2) — MP,(C)

qui associe & la classe du systéme cohérent semi-stable (T',F(1)) la classe
du faisceau F est Uéclatement Blg(Mp (c)) de Mp (c)) le long de la

sous-variété .
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Ona2—c(l)* =2h+ 4h?, et les faisceaux cohérents de classes 2k + 4h2
sont les faisceaux de dimension 1, de multiplicité 2, de caractéristique
d’Euler-Poincaré x = 6 : ainsi le support schématique d’un tel fais-
ceau est une conique. D’aprés le corollaire 4.22 on a un isomorphisme
Systp,(c(1),2) ~ Systp (24 + 44%,2). On obtient ainsi un diagramme de
variétés projectives

o
Systpz(c(l),2) — Ps= |0’P2(2)|
Mpz(c)
dans lequel le morphisme 7 est birationnel ; le morphisme o est le morphisme
qui associe & un point Systp (2h + 44%2) représenté par un systéme
cohérent (T',©) le support schématique de ©. Au-dessus d’une conique
lisse C, la fibre est isomorphe & la grassmanienne Grass(2, H?(9)), ol O est
l'unique faisceau semi-stable de rang 1 sur C de degré 5 sur C. On se propose

dans ce qui suit de montrer comment cette description permet d’aborder la

démonstration de ’assertion (i) du théoréme 4.1.

Courbe des droites de saut
Le calcul de la quartique des droites de saut peut se faire en termes de
systémes cohérents : en effet, considérons le diagramme standard du §4.1 :

p & p,

pr l

P;

Soit (T, ©) est un systéme cohérent semi-stable de classe 2k + 4h? et tel
que dimI' = 2, et F le faisceau semi-stable de classe ¢ associé dans la
correspondance ci-dessus. Sur le plan projectif dual, le faisceau pri.(pr3(0))
est un faisceau cohérent sans torsion de rang 2, de classes de Chern (4,6) ;
ce faisceau est non singulier en dehors des points correspondant aux droites
contenues dans le support de ©. On a alors un morphisme canonique sur le

plan projectif dual
I'@ Op; — prus(pr} ()

dont il est facile de vérifier qu'’il est génériquement injectif; le conoyau est

alors pur de dimension 1, et son support schématique est une quartique g
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qui coincide avec la quartique 4 des droites de saut de F. En particulier, si
£ est une droite non contenue dans le support de @, une telle droite définit

un point de yr si ’application linéaire
I'— H0(9|e)

n’est pas inversible.

Ezemple

On voit en particulier que si le support de © est une conique lisse, et si "
contient une section qui a 5 zéros distincts, la quartique 4 est circonscrite
au pentagone déterminé par ces 5 points. De plus, I'interprétation ci-dessus
permet d’étudier les singularités de la courbe des droites de saut : ceci
entraine que si I’ ne contient pas de sections ayant 2 zéros doubles, la quar-
tique yF est lisse (c¢f. Maruyama [19]; Trautmann [25] ). Réciproquement,
étant donné un vrai pentagone dans le plan projectif dual, c’est-a-dire &
10 sommets, ce pentagone définit 5 points distincts sur une conique lisse C
de P3; ces points sont les zéros d’une section s d’un fibré inversible © de
degré 5 sur C. Les systémes linéaires I' C H%(©) qui contiennent la section
s constituent dans la grassmannienne Grass(2, H°(0)) des sous-espaces de
dimension 2 de H°(©) un espace projectif de dimension 4, et le morphisme
-~ identifie cet espace projectif avec I'espace projectif des quartiques passant
par les sommets du pentagone donné. Par suite, toute quartique v de P3
passant par les 10 sommets d’un tel pentagone définit un point de 'image

% de v, autrement de ’hypersurface des quartiques de Liiroth.

Trois diviseurs dans Systp (2h + 4h?,2)

La description ci-dessus permet de mettre en évidence, outre le diviseur
exceptionnel, trois diviseurs irréductibles 3S,D;,D2 qui jouent un réle
important dans ’étude de la courbe des droites de saut :

1. Le diviseur JS des systémes cohérents & point de base, i.e. tels que
le morphisme d’évaluation I' ® &p, — © ne soit pas surjectif en au moins
un point p. Alors la quartique associée q est décomposée en une droite
(correspondant & p) et une cubique. Pour un tel systéme cohérent, le
faisceau semi-stable F associé est singulier en p.

2. Le diviseur D, est I’adhérence du sous-ensemble localement fermé des

classes de systémes cohérents stables (T', ©) tels que le support C de © soit
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lisse, et tels qu’il existe une section s de I’ ayant deux zéros doublesa et 5. La
quartique de Liiroth associée est singuliére au point de P correspondant a la
droite £ = ab. Ces quartiques sont appelées quartiques de Liiroth singuliéres
de type L

3. Considérons dans Systp2(2h + 4h?) l'image réciproque du diviseur
A des coniques singuliéres par le morphisme o. Ce diviseur est réduit et
a deux composantes irréductibles dont ’'une correspond via ’isomorphisme
ci-dessus au diviseur exceptionnel. L’autre composante D, est I’adhérence
de la variété des classes de structures de niveau (T', F) qui s’écrivent comme

extension stricte
0—(0,0") — (T, 0)— (I‘",@") -0

ol ©' et ©" sont des faisceaux purs de classe h + 2h%, donc de multiplicité
1 : ce sont des fibrés inversibles de degré 2 sur des droites £' et £
respectivement. De telles suites exactes sont classées & isomorphisme prés
par un fibré en espaces projectif P(7) de rang 6 au-dessus de P} x Hilb?(P3)
associé & un fibré vectoriel ¥ de rang 7, (cf. proposition 4.13) et une telle
extension est semi-stable, sauf peut-étre si le systéme linéaire (I'!, ©") a un
point de base. En fait, cette extension définit un systéme cohérent semi-
stable en dehors d’un fermé de dimension 5 de P(7); ce fermé ne rencontre
pas la fibre générique de P(7'). On désigne par P(7)** I'ouvert des points
de P(7) qui fournissent un systéme cohérent semi-stable.

L’exemple traité ci-dessus montre que le systéme cohérent (I'", ©") définit
un faisceau stable F" de rang 2 et classes de Chern (1,2) ; le faisceau semi-
stable F associé & (T, ©) dans la correspondance ci-dessus s’insére dans une

suite exacte
0—-F"'— F(l) — ﬁg:(—l) -0

ce qui implique que ¢' est une droite de saut d’ordre 2 pour F, i.e.
hY(F(—1)|¢#) = 2. Il en résulte que I'image par 7= du diviseur D, est le
diviseur des classes de faisceaux semi-stables F qui ont au moins une droite
de saut d’ordre > 2. La quartique q = 9 des droites de saut de F est encore
singuliére ; elle posséde en outre des éléments géométriques intéressants que

nous allons mettre en évidence :

Proposition 5.15. — Soit (I',0) un point générigue du diviseur Do,
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et q la quartiqgue associée. On garde les notations ci-dessus et on désigne
par O le point d’intersection des droites ¢' et £", et par T le deuziéme zéro
de la section s € T qui s’annule en O. Alors

(1) la quartique q a un et un seul point singulier, correspondant a £';

(i) la droite de P, définie par T est tangente en £ 4 g;

(iil) le cone tangent en £' et la tangente T se coupent sur q.

On dispose en outre sur la droite ¢ d’une involution qui associe a4 un
point générique a € £ le deuxiéme zéro a” de I'unique forme quadratique de
I c H%(©") qui s’annule en a. Cette involution détermine évidemment I'".
On peut en fait retrouver cette involution sur la géométrie de la quartique
q associée au point générique de P(7) : en effet, dans ce cas le faisceau O|¢
est un fibré inversible de degré 3 sur ¢/, et I' détermine aussi un systéme
linéaire sans point de base sur ¢'. L’unique section de I’ qui s’annule en a et
a” s’annule en trois points a; sur £'. Les droites a;a et a;a” définissent sur
q des points alignés. Par dualité, ceci se lit de la maniére suivante sur la
quartique : la droite a, qui passe par £", recoupe q en trois autres points;
ceci détermine trois droites dans le pincean des droites passant par ¢, et
ces droites recoupent la quartique en trois autres points appartenant a une

méme droite a” passant par £.

Corollaire 5.16.— Le morphisme v : P(¥)*° — P14 est génériguement

injectif.

On vient de voir en effet en effet qu’en dehors d’un fermé de dimension 11,
la donnée de la quartique q détermine les systémes cohérents ©' et (I'", ©").
Au-dessus d’un tel point, la fibre de P(7)** — P} x Hilb?*(P,) est un
espace projectif de dimension 6, et il suffit de constater que le morphisme
v : P(¥)** — P14 est induit sur ces fibres par une application linéaire ; elle
est donc injective.

On peut en fait prouver beaucoup plus :

Théoréme 5.17. —
(i) Le morphisme v : Systp (2k + 4h?%,2) — Py est génériguement injectif
le long de Da;

(ii) ce morphisme est non ramifié au point générique de Dy;
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(ili) soit & C Py Uhypersurface des quartiques singuliéres, et & = Im~ le

diviseur des quartiques de Luroth. Alors ¥ N % a deuz composantes

wrréductibles

NL =7(D1)U‘)’(D2).

Une quartique singuliére de 4(D5) est classiquement appelée quartique de

Liiroth singuliére de type II Il résulte de cet énoncé que ’image réciproque

d’un point représentant une quartique singuliére de type II générique est

schématiquement réduit & un point. Ceci conduit & I'assertion (i) du

théoréme 4.1.

L’existence des deux types de quartiques de Liiroth singuliéres semblait

connue au début du siécle ([2] ,[21] ). J’ignore si on peut caractériser par

des propriétés géométriques analogues & celles de la proposition 5.15 le point

générique de v(Dy).
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THE COMBINATORICS OF THE VERLINDE FORMULAS

ANDRAS SZENES

1. INTRODUCTION

In this short note we discuss the origin and properties of the Verlinde
formulas and their connection with the intersection numbers of moduli spaces.
Given a simple, simply connected Lie group G, the Verlinde formula is an
expression V,°(g) associated to this group depending on two integers k and
g. For G = SL, the formula is

oL k-1 k g-1
1.1 Vo2 (g) = —_— .
L) 20~ % (5z275)

We describe V€ for general groups in §2. These formulas were first written
down by E. Verlinde [23] in the context of conformal field theory. The interest
towards them in algebraic geometry stems from the fact that they give the
Hilbert function of moduli spaces of principal bundles over projective curves.
More precisely, let C be a smooth projective curve of genus g, and let MG be
the moduli space of principal G-bundles over C' (cf. e.g. [16] and references
therein). Then there is an ample line bundle £ over MMZ such that

(12) dim KOG, £*) = VG (9),

where h is the dual Coxeter number of G. This statement requires some
modifications for a general simple G, but it holds for SL, ([3, 7, 6, 16]).
Proving (1.2) is important, but in this paper we will address a different
question: what can be said about the moduli spaces knowing (1.2)? Accord-
ingly, first we concentrate on understanding the formula.
Two rather trivial aspects of (1.2) are that

e V&(g) is integer valued,

e V,¢(g) is a polynomial in k.
Note that looking at the formula itself, none of this is obvious. Our goal is to
explain these properties and connect them to the intersection theory of IMG.

The paper is structured as follows: in §2 we discuss some of the ideas

of Topological Field Theory, which explain the structure of the formula for
general G and show its integrality (cf. [13, 21, 8, 5]). In §3 we give our main
result, a residue formula for V€ for G = SL,. Such a formula gives an explicit
way of calculating the coefficients of V,¢ as a polynomial in k. Finally, in §4
we give an application of our formulas: a “one-line proof” of (1.2).

Research was partially supported by an NSF grant.
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This paper is intended as an announcement and overview. As a result, few
proofs will be given, and even most of those will be sketchy. A more complete
treatment will appear separately.
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suggesting to me this circle of problems and helping me with advice and ideas
along the way. I would like to thank Noam Elkies for useful discussions.
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2. ToPoLoGICAL FIELD THEORY AND FUSION ALGEBRAS

This section is independent from the rest of the paper. It contains a quick
and rather formal overview of the structure of Topological Field Theories
[20, 1] and Verlinde’s calculus [23].

Consider a finite dimensional vector space F (the space of fields) with a
marked element 1 € F (the vacuum). Assume that a number F(g)u, u,,..00
(correlation functions) is associated to every topological Riemann surface of
genus ¢, with elements of the algebra vy, v2,... v, € F inserted at n punctures,
which satisfies the following axioms:

Normalization: F(0),,, = 1,

Invariance: F(g).,,..= F(¢)1,01,...

Linearity: F(g),,,.. is linear in v;.
Introduce the symmetric linear 3-form w : FQ F ® F — C by w(u,v,w) =
F(0)y,u,0, the bilinear form (u,v) = F(0)y,, and the trace [u = F(0),. As-
sume that (,) is non-degenerate, and fix a pair of bases {u;,u'} of F, dual
with respect to this form, that is (u;,u’) = ;.

Verlinde’s fusion rule: F(g),,,..= X; F(9 — 1)y uv..-

One can extend F to disconnected surfaces by the axiom:

Multiplicativity: F is multiplicative under disjoint union.

Remark 2.1. These axioms serve as an algebraic model of certain relations
among the Hilbert functions of various moduli spaces. The number F(g)y,,v,,.v,
represents the dimension of the space of sections of a certain line bundle over
a moduli space of parabolic bundles with weights depending on the insertions
v1,%2,... V. The fusion axiom describes how the space of sections of a line
bundle decomposes over a family of curves degenerating to a nodal curve.
(See (7, 22]; also the article by Ueno in the present volume.)

Lemma 2.1. The azioms above define the structure of an associative and
commautative algebra on F, by the formula vw = ¥;w(v, w, u')u;, compatible
with (,) and [. Then if we denote the invariantly defined element ¥; uiu' € F
by a, we have

(21) F(g)vl,vz,...,vn = /agvlv2 coe Upe
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Now assume in addition that the algebra F is semisimple. Then it has
the form F = L%(S,p), where S = Spec F' is a finite set and the complex
measure g can be given via a function p: S — C.

The elements of F become functions on S and the trace [ turns out to be
the actual integral with respect to p. Now take the following pair of dual
bases: {8,,8s/p(s)| s € S}, where 8,(z) = 655 We call this the spectral basis.
Using this basis and (2.1), we obtain the following formula:

(2.2) F(g)=2_n(s)'™.

s€S

This formula resembles (1.1), but what is the appropriate algebra?

2.1. Fusion algebras. Here we construct the fusion algebras for arbitrary
simple, simply connected Lie groups. First we need to introduce some stan-
dard notation.

Notation. In this paragraph we will use the compact form of simple Lie
groups, still denoting them by the same letter. Thus let G be a compact,
simply connected, simple Lie group, g its complexified Lie algebra, T a fixed
maximal torus, and t the complexified Lie algebra of T. Denote by A the unit
lattice in t and by W C * its dual over Z, the weight lattice. Let A C¢ W
be the set of roots and W the Weyl group of G. A fundamental domain for
the natural action of the Weyl group on T is called an alcove; a fundamental
domain for the associated action on t* is called a chamber. We will use the
multiplicative notation for weights and roots, and think of them as characters
of T. The element of #* corresponding to a weight A under the exponential
map will be denoted by L.

Fix a dominant chamber € in t* or a corresponding alcove a in 7. This
choice induces a splitting of the roots into positive (At) and negative (A~)
ones. For a weight A, denote its Weyl antisymmetrizationby A-A = ¥, aw o(w)w-
A, where 0 : W — =1 is the standard character of W. According to the Weyl
character formula, for a dominant weight A, the character of the correspond-
ing irreducible highest weight representation is x» = A-Ap/ A-p, where p is
the square root of the product of the positive roots.

The ring R(G), the representation ring of G, can be identified with R(T)",
the ring of Weyl invariant linear combinations of the weights. Denote by dur
the normalized Haar measure on T. If we endow T/W with the Weyl measure

duw = A-p A-p dyr,

then R(G) becomes a pre-Hilbert space with orthonormal basis {x)}, i.e. one
has
Jrpw xoxu dpw = 6. O

We need to introduce an integer parameter denoted by k& called the level,
which can be thought of as an element of H*(G, Z) = H*(BG,Z) & Z, and in

turn can be identified with a Weyl-invariant integral inner product on t.
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The basic invariant inner product on t corresponding to k = 1 is specified
by the condition (Hy, Hy) = 2, where Hy € t is the coroot of the highest root
Lg. It has the following properties (see [13, §6],[19, Ch.4]):

¢ For the induced inner product on *, we have (Lg, Lg) = 2.

e For A € W, the inner product (L4, L)) is an integer, and (,) is the
smallest inner product with this property.

¢ The Killing form is equal to —2A(, ), where h = (Lg, L,)+1 is the dual
Coxeter number of G.

The basic inner product also gives an identification » : t* — t between t* and

t, by the formula 3(z) = (v(8), ).

2.2, The simply-laced subgroup. Let A; € A be the set of long roots of
G. Denote by W, the lattice in t* generated by A, and by W, the lattice
generated by A;. By definition A is the dual of W over Z with respect to the
canonical pairing (,) between t* and t. The dual of W, is the center lattice
in t. Denote the dual of W, by A,.
The root system A, corresponds to a subgroup G| of G with maximal torus
T and Weyl group W, C W, which is generated by reflections corresponding to
the elements of A;. Denote the center of G| by Z;. Then Z; can be described
as the set of elements of T invariant under W}, and we have exp™' A; = Z;.
It is important to note that in view of the second property of (,) above,
v : W, — A is an isomorphism. Since W is paired to A and W), is paired to
Ay over Z, it follows that v : W — A, is also an isomorphism. Then the map
exp-v: {a€€|(Ls,a) <1} — ais a bijection.
Naturally, if G is simply laced, then G; = G. For the non-simply laced
groups one has the following subgroups:
e Spiny, C Sping,,
e SU3 C Sp,,
e SUs C G,
e Sping C F,

2.3. The definition of the fusion algebra. We give a different definition
from the standard one via co-invariants of infinite dimensional Lie algebras
[22], but one which is very natural from the point of view of representation
theory.

To motivate the construction, recall the procedure of holomorphic induction
[4]: the flag variety F = G/T has a complex structure and every character X
of T induces a holomorphic equivariant line bundle £y = G x,C over F. Then
one can define the induction map Z : R(T) — R(G) as a homomorphism of
additive groups by the formula A — ¥ (—1)' H'(F, L)), where the cohomology
groups in the latter expression are thought of as G-modules. The Borel-Weil-
Bott theorem then says that

(2.3)
for A dominant Z(\) = x)
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and

(2.4)
Z(N) = o(w)Z()), whenever X'p = w(\p) for some w € W.

Note that 7 is not expected to be a ring homomorphism.

This procedure applies to the loop group G as well ([19, 15, 17]). Once
the action of the central elements is fixed as ¢ c*, where k € Ni N is the level,
again, we have a map I:R(T)— Rk(LG) This last object Rk(LG) has only
additive structure, since the tensor product of two level k representations
has level 2k. The role of the Weyl group is played by the affine Weyl group
W) obtained by adjoining to W the translation by (k + 2)Ls. Again the
Borel-Weil-Bott theorem applies, and (2.4), with W replaced with Wy, gives
a description of the kernel of Z.

Since W C Wy, the map 7 factors through 7, and as a result we have a map
J : R(G) — Ri(LG). It is easy to see from (2.4) that the set of characters:
Zx = {x»|(Lg, L) < k} forms a basis of Ri(LG) if we identify J(x») with
XA

Lemma 2.2. The additive group Rk(fa) can be endowed with a ring struc-
ture FE so that the map J becomes a homomorphism of rings.

The algebra FE is called the fusion algebra of G of level k. As noted above,
we can consider = to be a basis of FC. Endow FF with the trace function [
by the formula [ x)» = 0 except for the trivial character x;, which has trace
equal to 1. Also note that since Spec(R(G)) = T/W and FF is a quotient of
R(G), we expect Spec(FF) C T/W.

Lemma 2.3. FE can be identified with “L?” of the finite normalized measure
space Z, = {teT|t**" € Z,, t is reqular} /W, with measure dy. given by the
Sfunction

A-p(t) A-p(t)
1Zi|(k + h)

Note the surprising fact that the discrete measure remains unchanged up
to a normalization factor as k varies.

Now we can define the quantity V,(¢g) which appeared in (1.2) as the
number associated to a Riemann surface of genus ¢ and the fusion algebra
FE ,. Combining (2.2) and (2.5) we obtain

2z
Vil = X (Wt)lA-}i(T)> ’

teTy /W tkeZ,

(2.5)

where T, is the set of regular elements of T. This can be easily seen to give
(1.1) for the case of G = SU,. Indeed, embedding the maximal torus of SU,
into C as the unit circle, we have: p(z) = 2, Z; = £1, h = 2 and A(2) = 1/=.

Finally, note that since the relations in the fusion algebras given in (2.4)
have integer coefficients, and the {x,} form an orthonormal basis of F, we
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see that [af from (2.1) has to be an integer. This proves that V,C(g) is an
integer for all groups and values of k and g.

Remark 2.2. That this definition of the fusion algebras is equivalent to the
standard one via coinvariants of current algebras [22] can be shown to be
equivalent to Verlinde’s conjecture on the diagonalization of the fusion rules.
which gives a formula for the product in F¢ using the S-matrix. The defi-
nition given above is simpler to use for calculations and it gives the correct
prescription for non-simply-connected groups (see also [8]).

3. RESIDUE FORMULAS

In this section we study V|(g) as a function of k. We show that V,¢(g) isa
polynomial in k for G = SLs, and give a simple formula for the coefficients of
this polynomial. The generalization of these results to SL,, is straightforward.

Consider the case G = SL; first. Again, as at the end of the previous
section embed the maximal torus of SL, into C C P

Consider the differential form

_ dzz+z71

z z—z"1

n P!

I

This form has simple poles: at z = +1 with residue 1, and at z = 0,00
with residue —1. Thus if we pull back g by the k-th power map we obtain a
differential form ui with poles at the 2k-th roots of unity and residues +1,
and simple poles at z = 0,00 with residue —k . It is given by the following
formula:

Note that pj is invariant under multiplication by a 2kth root of unity and
under the Weyl reflection 2 — 1/z.

Now suppose we have a function f(z), with poles only at z = £1, vanishing
at 0 and oo, and invariant under the substitution z — 27!. Then by apply-
ing the Residue Theorem to the differential form fui and using the Weyl
symmetry at hand, we have

k=1
Z: flexp(rv/=1j/k)) = — Res i f(2).

Applying this argument to the function

CHE=— 1

VkSL2(g) = (=1)?(2k)* " Res %zk + 2k (( 1 _1)2>9—1.

=1 z zF—z7k\(z—2

we obtain the formula
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Now using the invariance of the residue under substitutions we can obtain
different formulas for V> (g). For example, the polynomial nature of Vel (g)
becomes transparent if we perform the substitution z — exp(/z):

_ k cot(kz) dz
SLa( ) — _ (9%}~ Reg —~ CONKE) T
Vi 2(9) = —(2k) I}SDS (2sin £)26-1)’

It is easy to check using this formula that the degree of V?™*(g) as a poly-
g)c;sng‘ia.l in k is 3(¢g — 1), which, as expected, coincides with the dimension of
2

2

Before we proceed, we need an understanding of higher dimensional residues.
The notion that a top dimensional differential form has an invariantly defined
number assigned to it, does not carry over to higher dimensions. The correct
object in C* is Res : HE (2", C*) — C mapping from the nth local Cech co-
homology group in a neighborhood of 0 with values in holomorphic n-forms
to complex numbers. To define this map let w be a meromorphic n-form
defined in a neighborhood of 0 in C*. Then w can be represented in the form
dzydz; ...dz,h(2)/ f(2) where f and h are holomorphic functions. The ad-
ditional data necessary to represent an element of Hp (£2*,C") is a splitting
of f into the product of n functions f = aja2...a,. Such a splitting defines
n open sets in a neighborhood of 0: A; = {a; # 0}. These define a local
Cech cocycle. A detailed explanation of this and an algorithm to calculate
the residue can be found in [9, 10].

We will call a differential n-form with such a splitting a residue form.

Definition 3.1. A non-trivial residue form w is called flaglike if a; only de-
pends on zy,...z. This notion depends on choice and the order of the coor-
dinates 21,...,2n.

Lemma 3.1. Let w be a flaghke residue form. Then
Res(w) = Res...Resw.

Here Res,, is the ordinary 1-dimensional residue, taken assuming all the other
variables to be constants.

The proof is straightforward. Note that the order of the variables is im-
portant, while there is some freedom in the way the denominator is split

up.
For simplicity we restrict ourselves to the case of SLs. Accordingto Lemma2.3

and (2.2) the Verlinde formula can be written as

(3.1)
Vla(g) = 3Ky >~ (8sin(iw/k)sin(jx/k)sin((: +J)w/k))"26D

1,5,k—i—3>0

Now we can write down the main result of the paper:
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Theorem 3.2.

Xk X—k Yk+Y—k
SL3 _ 2\g-1
(3'2) ‘/k (g) - (3k ) Rﬁl )I{{ﬁ? Xk X_k Yk _ Y_k X

(=1)# k*dX dY
X=X - Y XY - (XY) )0 XY

The proof is analogous to the case of SL;. Denote the residue form in (3.2)
by wi(g). Again at the points p;; = (e™/*, ei1™/*¥) with 4,5,k — i —j >
1 the residues of wi(g) reproduce the sum (3.1). However, now it is not
immediately obvious that the residue theorem can localize this sum at the
point (1,1), since the residue form in (3.2) has non-trivial residues at other
points as well. To illustrate the situation consider the matrix M, whose
(¢,7)th entry is the residue of wi(g) taken at the point p;; instead of (1,1),
where 1,5 =0,...,k—1.

Example for ¢ = 2:

166 —45 —29 —18 —29 —45 ]
—45 36 9 9 36 —45
-29 9 4 9 -29 36
-18 9 9 -18 9 9
-29 36 -29 9 4 9
—45 —45 36 9 9 36 |

M6=

We can apply the Residue Theorem to “each column” by fixing a value of
X. By degree count, one can see that w(g) has trivial residues at ¥ = 0,00
and this implies that the sum of the entries in each column of M;(g) is 0.
Next, note that My(0,:) = M(z,0), since these residues are split, i.e. they
have the form dX dY XY " f(X,Y), where f is holomorphic at the point
where the residue is taken.

Now to prove the Theorem it is sufficient to show that Mi(5,0) = Mi(j, k—
j) for every j > 0. To see this, note that both residues are simple (first order)
in X at a = exp(jw/k). This means that after taking the X-residue, we are
left with the form

dYY* + Y-+ 1

Y YE—Y-*((Y —Y!)(aY — 1Y 1))2e-1)’

The two numbers we need to compare are the residues of this form at 0 and
a respectively. But these two residues clearly coincide since w, is invariant

under the substitution Y — o~1Y-1, O
The formula for G = SL, reads as follows:

(3.3)
VE(g) = (—1)r 6Dt (pgr-1)s—l Res . . Res W20- 1)H

nl:l

we, = const:

P XF+1 kdX;
X"—l 2X;
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where X;, 1 = 1,...,n — 1 are the simple (multiplicative) roots and W =
[Macat (a3 — a~%) is the Weyl measure.

As we pointed out after Lemma 3.1, the ordering of the variables matters
when taking the subsequent residues. In the special case of G = SLs this
ordering does not matter (i.e. My(z,7) = Mi(4,1)), but for higher rank groups
a finer argument is necessary.

Finally, note that similarly to the case of SLj, (3.3) gives a simple prescrip-
tion for calculating the coefficients of V,%(g) as a polynomial in k, via the
exponential substitution. For example, for SL; we obtain

k2
SLo(g) — (34291 k*cot(kz) cot(ky) dz dy
(34) V(e =Gk l}_eos l}f‘) (8sin(z) sin(y) sin(z + y))2-D’

A different generating function was obtained for the case of G = SL3 by
Zagier [26].

4., MULTIPLE (-VALUES AND INTERSECTION NUMBERS OF MODULI SPACES

In this final section we show how (1.2) and (3.2) can be related via the
Riemann-Roch formula to Witten’s conjectures on the intersection numbers
of moduli spaces. Our argument below gives a quick proof of (1.2) for SL,
assuming Witten’s formulas. This is a generalization of the work of Thaddeus
who considered the case of SL; [18].

4.1. Multiple (-values and intersection numbers of moduli spaces.
Consider the case of SL, first. If we want to find the asymptotic behavior of
VU for large k, the best way to think about the formula is that it is a discrete
approx1mat10n to the (divergent) integral [} sin(wz)2¢~Ddz. To find the
leading asymptotics, we can replace sin(z) by z, and taking the large & limit
we obtain: (k/2)9~! T2, (k/(jx))2¢Y) = k3<9-1>4(2(g —1))/(2¢7 1 x%6- D),
This can be easily proven, and in fact, a generalization of this formula for
arbitrary groups appeared in Witten’s work [25].

Below we will concentrate on the case of SLj, however the formulas can be
extended to SL, as well.

If we perform the trick above for SL3, up to a constant, the leading behavior
of the Verlinde formula appears to be

Ve (k) ~ const- k20D /a0 37 (45(i + j)) 7200,
1,7=1

One can write down more general sums, e.g.:

S(a,b,c) Z TG+ )
=1
closely related to the so-called multiple zeta values [27).

It was discovered by Witten that all intersection numbers of moduli spaces
are given by combinations of multiple {-values [24, 25]. Below we give a couple
of useful formulas for them. We restrict ourselves to the case S(2¢,2g, 2g) for
simplicity. Similar formulas exist in greater generality.
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Lemma 4.1.
1.
(4.1 5(29,29,29) = 5/(; Byy(2)° dz,

where B,(z) is a modified nth Bernoulli polynomial, B,(z) = —(2x1)*B,(z)/n!.
4.2) S(20,20,29) = § Rescot(z) cot(y) (ay(z +1))7.

Sketch of Proof: The first formula follows from the definition of the Bernoulli

polynomials:
Bn(.’ll) — 262\/3‘7"“:/]-1;‘
J#0

Indeed, substituting this into 1 [j Bz, (z)® dz, one obtains S(2g,2g,2g) on the
nose; the coefficient 1/2 is a combinatorial factor.

The proof of the second formula is similar to the proof of Theorem 3.2.
One has to apply the Residue Theorem in two steps. That the residue at
infinity vanishes follows from the expansion cot(z):

reot(rz) =) (z—n)"'. O
n€Z

4.2. Intersection numbers of the moduli spaces. First we recall some
facts about the cohomology of the moduli spaces. We will ignore that the
moduli spaces are not smooth in general, and accordingly, we will assume
the existence of a universal bundle, Riemann-Roch formula, etc. However,
formulas analogous to (3.2) exist for the smooth moduli spaces as well (e.g.
when the degree and rank are coprime for SL,), and all of our statements
are rigorous for these cases. Some of the singular moduli spaces (e.g. vector
bundles) can be handled using the methods of [3]. We will also ignore certain
difficulties which arise for Spin,, n > 6, and the exceptional groups, where the
ample line bundle exists only for ¥ =0 mod [, for some [, depending on the
type of the group. In these cases the Verlinde formula is a polynomial only
when restricted to these values. Thus what follows should be perceived as a
scheme of a proof, which works as it is in some cases, but requires modification
and more work in greater generality.

There is a universal principal G-bundle U over the space C x IMZ, which
induces a map ME — BG, and consequently a map s : H*(BG) — H*(ME)®
H*(C).

Recall that H*(BG) = Sym(g*)€, the space of G-invariant polynomial func-
tions on g. This is a polynomial ring itself in rank(G) generators and it is iso-
morphic by restriction to S¢ = Sym(t*)". For every a € H;(C) and P € S¢
we obtain a cohomology class of @ N s(P) € H¥*~9(IMG), the a-component of
s(P). In fact, s induces a map 3 : H,(C)N S — H*(ME), where H*(C) N S¢
is the free commutative differential algebra generated by the ring S¢ and the
differentials of negative degree modeled on H.(C). For the case of SL, and
coprime degree and rank it is known that 3 is surjective [2, 14]. In particular,
denoting the fundamental class of C' by 7¢, and the basic invariant scalar



SZENES: The combinatorics of the Verlinde formulas 251

product from §2 by P, we obtain a class w = ¢ N s(R,) € H}(ME), which
turns out to be the first Chern class of the line bundle from (1.2). To simplify
the notation, below we omit the map s and also a if @ = 1, when writing
down the classes H*(9ME). Thus 1 N s(P) will be denoted simply by P.

Any power series in the variables aN P can be integrated over ME and these
numbers are called the intersection numbers of the moduli space. Naturally,
only the terms of degree dim9M& = dim(G)(genus(C) — 1) will contribute.

Witten, using non-rigorous methods, gave a complete description of these
intersection numbers in the most general case [25]. His formulas are com-
binations of multiple (-values, and are rather difficult to calculate. In this
paper, we will focus only on a subset of these intersection numbers, which
are of the form fy; w'P, where [ € N and P is a not necessarily homogeneous
Weyl-symmetric function on t.

Conjecture 4.2. For every group G, there ezists a residue form Q¢ depend-
ing on g, defined in a neighborhood of 0 € t, the Cartan subalgebra of G, such
that

(4.3) /m P = Res O°P,
For G = SL,,,
(44) Q=07 Res ... Eszag+L2‘g“>}_Tlcot(x ) da,

where the z;-s are halves of the simple (additive) roots of SLy,, ordered ac-
cording to the Dynkin diagram.
Let us write down the formula for SL3 more explicitly and inserting the

“grading”:

rw 2y0-1 k? cot(kz) cot(ky) dz dy
45) [ &P = (k") ResRes Tew

Remark 4.1. It can be shown that (4.4) is consistent with Witten’s formulas.
We will not give the proof here, but note that the link between the two types
of formulas is given by equalities like (4.2).

At the moment we do not know Q¢ for general G.

Our formulas seem to be related to those given in the works of Jeffrey and
Kirwan [11,12]. O

Finally, we present another evidence for (4.4): the consistency with the
Verlinde formula. First we need a few facts about the moduli spaces. Fix a
curve C of genus ¢ and a group G. They will be omitted from the notation.

Lemma 4.3.
(1) a(Tm) = hw,
(2) p(Tm) = (AdU,)* 0D = [[oea(l + @)@V,

N 2(g—1)
(3) A(Tg;n) = [laeat+ (Eh'(%ﬂ—)) .
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Here h is the dual Cozeter number of G, p denotes the total Pontryagin class,
¢ the total Chern class, U, is the bundle over M obtained by restricting the
universal principal bundle U to a slice z x MM for some z € C and AdU, is
the vector bundle associated to U, via the adjoint representation of G.

For the proof of the first two statements in some partial cases see [2]. The
second statement follows from the Kodaira-Spencer construction. From the
second statement we find that the Pontryagin roots of Toy are the roots of
the Lie algebra g, and this in turn implies the third statement.

Finally, we can put everything together. We will calculate dim H°(OR§, £*).
Again, consider G = SL; for simplicity. First, the Kodaira vanishing theorem
applies to £*, because the canonical bundle of 9 is negative, (this follows
from the Lemma 4.3(1), see also [3]). Thus we can replace the dimension of
H° by the Euler characteristic, and apply the Riemann-Roch theorem:

dim HO(M, £*) = x(ME, £*) = /m " Todd (D).

According to Lemma 4.3(1), and using the standard shifting trick we can
rewrite this integral as

(k+h)w 4(01).
[yt

We can calculate this integral using (4.5) and Lemma 4.3(3), and the result
is exactly V,¢(g) according to (3.4). This proves (1.2). O
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CANONICAL AND ALMOST CANONICAL
SPIN POLYNOMIALS OF AN ALGEBRAIC SURFACE

ANDREI TYURIN

Steklov Mathematical Institute

0. INTRODUCTION

Classically, two approaches have been proposed in algebraic surface the-
ory: the first uses standard stuff on linear systems, adjunction and sin-
gularity theory. As usual, one gets results about some particular class of
surfaces. The second uses a representation of the surface as a pencil of al-
gebraic curves; that is, as a curve over a function field. This method is very
useful for arithmetic applications. If the genus of the fibre is small, it can
be used to describe certain classes of surfaces, such as elliptic surfaces and
pencils of genus 2 (Xiao Gang), or to obtain some information on ‘atomic
structure’ of surfaces, in Miles Reid’s terminology.

Both of these methods use some geometric subobjects of the surface, such
as curves and points. On the other hand, there exist also geometric objects
lying over a surface, such as vector bundles and torsion-free sheaves, which
are expressive enough to describe the geometry of the surface itself.

From a technical point of view, rank 2 vector bundles are extremely
useful for understanding the underlying smooth structure of an algebraic
surface. But I will try to convince you that they are also useful in algebraic
geometry. To do this, let me recall two examples of the use of rank 2 vector
bundles in the two approaches referred to above. In the first, any base
point of a complete linear system determines a rank 2 vector bundle, whose
geometry gives good information about this linear system. In the second,
using a fibration of a surface one can try (following Miyaoka) to construct
fibrewise a stable rank 2 vector bundle with ¢; equal to the canonical class
of the surface, and Euler characteristic zero. The existence of such a bundle
implies the geographical inequality K% < 2c3(S) (see for example [T3]).
The interplay between geometric ‘subobjects’ and ‘overobjects’ is described
by the theory of jumping curves.

In the present article we propose a new system of notions, constructions
and notations for a third approach in algebraic surface theory.
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1. JACOBIAN OF A SURFACE

Let S be a nonsingular, compact, nonruled, regular algebraic surface.
Then the map m: S — Smip of S to the minimal model Spiy of S is uniquely
determined. Let Kmin = m*(Ks,,.) € H(S,R) be the pullback of the
canonical class of the minimal model. Then Kmin € H(S,R) is contained
in the closure of the K&hler cone K(S) C Pic S®R.

Recall that a polarisation H is almost canonicel (an ac-polarisation for
short) if the ray R* - H in the projectivisation of the Kéhler cone is close
to the ray R* - Kyin in the sense of the Lobachevski metric (see [T5]). The
symbol M%°(r, ¢, ¢z) will denote the moduli space of ac-slope stable bundles
on S of rank r with Chern classes ¢, cz. By analogy with the Jacobian of
an algebraic curve we have proposed (see [T5]) the following definition.

Definition 1. The Gieseker closure (see [G])

M®<(2, Ks,ca(S)) = J(5) (1.1)

is called the Jacobian of S.

The Jacobian J(5) contains a distinguished point T*S5 = Q.5 € J(S5), the
cotangent bundle of S, which is stable by a theorem of Bogomolov. Hence
J(S) is always nonempty and dimJ(S) > v.dim J(S) (= the virtual, or
expected, dimension of J(S)) = 4cy(S) — K2 —3(py + 1) .

Now it is easy to see from the last formula for virtual dimension of moduli
spaces of vector bundles that the virtual dimension of J(5) can be described
as follows. By Noether’s formula the constant u(S) = (3c2(S) — K%)/4 is
an integer—called the Miyaoka number of S—and the expected dimension
of the Jacobian of § is

v.dim J(S) = 5u(S). (1.2)
In particular dim J(S) > 5u(S) > 0, because of the Bogomolov-Miyaoka-

Yau inequality. Moreover, one has:

(1) w(S)=0= S =P? and J(P?) = T*P? is a single point.
(2) For a K3 surface p(S) = 18 is the same number as for the projective
plane with 18 points blown up.
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(3) If 0: § — S is the blow-up a point of S then u(S) = u(S) + 1.
(4) For an unramified cover ¢ : §' — S of degree d, u(S') =d - u(S).

In fact, it is also useful to consider the following generalisation of our

J(S) (see [T3]).
Definition 2. The Gieseker closure (see [G])

M(2, K5, c2(8) + ) = Ji(S) (1.3)

is called the k-th Jacobian of S.

By analogy with J(S) the k-th Jacobian contains a distinguished sub-
scheme:

(QS}i = {F € Jy(S)|F* = Q8}, (1.4)

the subset of torsion-free sheaves which have the cotangent bundle of S as
reflexive hull. The structure of {25}« can be described as a projectivisation
of the standard vector bundle on the Hilbert scheme of S and dim{Q25}; =

3k.
The virtual (expected) dimension of the kth Jacobian of S is given by

v.dim Jx(S) = 5u(S) + 4k. (1.5)

A priori the geometrical dimension of J(.S) can be bigger than this, but
for Ji(S) with large k the virtual dimension is equal to the geometric di-
mension (by a Donaldson type theorem). This is one reason for considering
the generalisation. Another reason is illustrated by the following example.

Example 1: Blow-up of a point. As usual, any point s € S defines the
so-called Poincaré P!-bundle

n : Po(Ji(S)) = Ji(S), (1.6)
where for any vector bundle E € Ji(S), the fibre
=~ !(E) = PE,
is the projectivisation of the fibre of E over s.
Of course, this construction works only over an open subset of the moduli
space. We can extend this P!-bundle to the blow-up along the subvariety

Ji(S)s = {F|s € Sing F} C Ji(S).

Now if o: S — S is the blow-up of a point s € S and £ is the exceptional
curve on S then it is easy to see that

Ji(8) = Po(Jin1(9)) (1.7)
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birationally. The birational map ix: Ps(Jx+1(S)) — Jx(S) is defined by
in(E)* =ker(a"E* — Op)*. (1.8)
The inverse map i, ' is well-defined over an open subvariety
Ji(8)o = {F € Ju(S)|F|e = Oc ® Ou(—1)} (1.9)
of Ji(§), namely
i (F) = RPo(ker(F — Oy(-1))). (1.10)
A full filtration of Ji(§) is given by subvarieties
Te(8)n = {F € Ju(8)IF|e = Oen) ® Or(—1 — n)} (1.11)

which are the spaces of stable quasi-parabolic bundles for the pair £ € § ,
where £ is the exceptional curve, described by Kronheimer in [K]. There
exists a beautiful description due to Brieskorn of a versal filtration of this
type, which predicts the birational modification which we need to make in
order to get a regular map.

Hence if S, is the result of blowing up n points on S then J(§n) is
rationally fibred over J,(S) :

i1 J(Sn) = Ja(S) (1.12)

with (P')™ as a fibre, and we can specify (at least theoretically) birational
modifications to resolve the indeterminacies of this birational correspon-
dence.

The final task is to extend this construction to sheaves with singularities
on £.

Now we can define our system of discrete invariants of S. Namely, the
standard definition of the slant-product in the algebraic geometric context
(see [T4]) defines a polynomial

avs € SN H?(S,Z)® H*(S,Z)). (1.13)

(If the Jacobian J(S) has the expected dimension this construction is straight-
forward, but otherwise we need to use some trick; as for example in [P-T] or
in §7 of [T1].) As is usual we will sometimes consider only the polynomials
in H?,

The same construction gives a collection of polynomials

ayr € SR (HY(S Z) @ HA(S,Z)). (1.14)
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Definition 3. The polynomial (1.13) is called the canonical polynomial of
S. The polynomials (1.14) are called the almost canonical polynomials of
S.

Continuation of Example 1. The following result is a consequence of
the descriptions of the birational maps between Ji(S) and Jx41(S) x P

Proposition 1. Any canonical or almost canonical polynomial of S is a
linear combination of canonical and almost canonical polynomials of S with
polynomials in £ as coeflicients.

By induction this also holds for the blow-up of n points of S, but as
coefficients we need to use polynomials in the exceptional linear forms and
in the intersection form on the blown-up lattice.

Remarks. (1) In the differential geometry set-up this proposition was
proved by J. Morgan and T. Mrowka (see [M-M]) for the first step of the
birational correspondence. We shall not give here any more precise state-
ments and constructions because V. Pidstrigach has proved this in a rather
more general situation. Namely, by Morgan’s Theorem (see [M]) our al-
most canonical polynomials coincide with w2(5)-Donaldson polynomials of
the underlying smooth 4-manifold of S. Instead of S and S, one can con-
sider a 4-manifold of the form

M, = M#N, (1.15)

where M is a simply connected 4-manifold with b3 > 1, and N is any
negative definite 4-manifold with rank H%(N,Z) = n.

(2) Actually the situation described above holds only in the case when K%
isodd. If K% is even then a priori there exists a finite set of chambers around
Koin in the Kahler cone, and there is a finite set {J,,(S)i} of birationally
equivalent Jacobians (for details see [T6], Chap. 1, §2).

(3) The geometric situation of Example 1 ( formulas (1.7)-(1.12) ) was
described in [Q] and [B2] and successfully used by Okonek and Van de Ven
in [O-V].

(4) Recently R. Fintushel and R. Stern have presented a beautiful blow-
up formula (see [F-§]).

2. JUMPING FILTRATION AND SPIN POLYNOMIALS

Next we shall consider the subset
0=0(S)={F¢e J(S)|h°(F)2 1} (2.1)

of J(S). (We denote this subspace by theta by analogy with Riemann’s
Theorem in the case of algebraic curves.)



260 TYURIN: Canonical and almost canonical spin polynomials

Actually the jumping conditions define a filtration (see [T5]):
J(§)202W'(S)2---2WT(5)2--- (2:2)

If the family of torsion-free sheaves is in ‘general position’ near F, then

the fibre of the normal bundle to W7(S) at F is given by
Nw-/y(s)|r = Hom(H°(F), H'(F)) (2.3)

with HY(F) =C7, H'(F) = C™x(F) (if x(F)<0).
Thus the virtual (expected) codimension of @ is

v.codim® =1—x(T*$) =1+ @ + 2—"§’§—) (2.4)
(in particular note that © is never a divisor) and the virtual dimension of
the theta locus is
35¢5(S) — 13K?
BB K 1 —au(S) - (o) + ) -1 (25)
This integer is nonnegative if and only if the inequality

(2696969 - - )ca(S) > K2 (2.6)

v.dim© =

holds.
Again the standard definition of the slant-product homomorphism in the
algebraic geometric context (see [T1]) gives the polynomials

ave € SU™O(H?(S Z)® H(S,2)); (2.7)
but here we must be careful with the choice of polarization, as explained in
[T6].

Definition 4. The polynomials (2.7) are called canonical spin polynomials
of S.

Of course, we can do the same with the k-th Jacobian: consider the
subset @) = {F|h°(F) > 1} C Jx(S). The jumping conditions again define
a filtration defined by

Je(§) 20k 2 Wi(S)2--- 2 W(5)2 -

(see [T5]). The description of the normal bundle is exactly the same as
before, and thus the virtual codimension of © is given by

alS) | 2u(S) .
3 + 3 + k; (2.8)

v.codim@r =1—x(T*S)+k=1+
and the virtual dimension of O is
35¢5(5) — 13K?
12 +3k -1 (2.9)
=4p(S) — (pg(S)+1)+ 3k —1.
The standard definition of the slant-homomorphism gives polynomials

ave,(s) € S" MO (H*(S,Z) ® H(S,Z)). (2.10)

v.dim@; =
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Definition 4'. The polynomials (2.10) are called almost canonical spin
polynomials of S.

Remark. An interesting observation here is the following: codim @, =
1+ %S_) + 2"3& + k and dim{Q2S}x = 3k (see (1.4)) but since our surface
S is regular, the intersection {25}, (] O is always empty. This means that
the Gieseker compactification is very far from minimal, and O is very far
from ample.

Continuation of Example 1. First of all, if we blow up a point s on S as
in (1.6) and (1.7) and consider the restriction of the Poincaré bundle (1.6)
to @k(S):

7: Py(04(S)) — 0x(S5) (2.11)

then birationally
P,(0r1+1(5)) = Ok(S). (2.12)

Indeed, we have the exact sequence
0— 0*(E) = ix(E) = Of-1) = 0

and every section of ix(E) comes from E. The same is true for a sheaf
belonging to each subvariety of the Brieskorn filtration (1.11) and again we
can describe the modification precisely.

Repeating the constructions for Jacobians (see(1.6)—(1.11)) in the set-up
of theta loci yields the next result.

Proposition 2. Almost canonical spin polynomials of § are superpositions
of almost canonical spin polynomials of S with polynomials in £ as coefli-
cients; and the same holds for repeated blow-ups, but then the coefficients
must be polynomials in the exceptional linear forms and in the intersection
form on the blown-up lattice.

Here again, a stronger result in the differential geometical set-up was
announced by V. Pidstrigach in [P1]. In [P2] he successfully used the gluing
constructions for jumping instantons to obtain a proof of the Van de Ven
conjecture.

What do we know about general properties of Jacobians and theta loci?

Application of general theorems to our particular case yields the following
properties if k is sufficiently large:

(1) Jk(S) has the right dimension (Donaldson [D], Zuo [Z]).

(2) Jx(S) is irreducible (Gieseker-Li [G-L]).

(3) If S is of general type and minimal, then Ji(S) is also of general type
(Li).
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About O, we know that if it has the right dimension then O, is fibred
over the Hilbert scheme of §

O — Hilbe2(S)+* (2.13)
with rational fibres P”, where
n=cy(S)+k—Ki—py(S)—2. (2.14)

One can see that for large k the theta locus loses property (3) even for
minimal surfaces of general type.

The important property, which implies (3) for Jacobians is the following
(Li):

(4) For a generic holomorphic form w € H?9(S) one has avyx(w + @) > 0.

In contrast to this property of almost canonical polynomials, for spin
polynomials we have:

(5) For any holomorphic form w € H>%(S) one has

ave,(w + @) = 0. (2.15)

This means that the shape of spin polynomials is simple, as we shall
prove in this article. The main result is the following:

Shape Theorem. There exists on S a finite set of irreducible curves
Crio,COnes) (2.16)
subject to the conditions
2C; - Kmin < K2, (2.17)

such that any almost canonical spin polynomial on H? with k >> 0 has the

form )
ave, € Sv'd'me"(qs,Ks,Cl,...,CN(S)). (2.18)

In other words, ave, is a polynomial in the intersection form ¢g as a qua-
dratic form, and in the classes of curves (2.16) and the canonical class as
linear forms.

As a corollary of this fact, one has the following result:
sV Theorem. If either pg(S) > 0 and S is not a K3 surface, or S is the

Barlow surface, then there exists a proper nontrivial sublattice

sV(S) C Pic § ¢ H*(S,Z) (2.19)
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such that:

(1) sV (S) is invariant with respect to the action of Diff S;

(2) sV(S) contains K5 and all —1-curves:

(3) if ! is any other algebraic surface structure on the underlying differ-
entiable 4-manifold of S then

sV(S) =sV(S"). (2.20)

In particular, this means that the minimal algebraic subgroup A(S) of
the complex orthogonal group Oc(gs) containing the image of the represen-
tation of the diffeornorphism group Diff S is reducible.

Remark. The diffeomorphism invariant sublattice sV (S) is contained in
the lattice <Ks,Cl,...,CN(s)> C Pic S C H?(S,Z) generated by the col-
lection of classes (2.16) and the canonical class, but it may be a proper
sublattice of <Ks, Chyeeny CN(5)>. In fact, direct computations show that on
the one hand we can remove all (-2)-rational curves from the system of gen-
erators (2.16) (see the end of [T4]), but on the other hand we can’t remove
the canonical class or the (-1)-rational curves.

From the present point of view, the lattice sV can be called the smooth
Picard lattice, and our next aim is to prove that:

(1') sV(S) contains a nontrivial subcone of ample divisors
sK(S) = K(S)NsV(S) C sV(S), (2.21)

where K(S) is the Kahler cone of S; and
(2') if S is any other algebraic surface structure on the underlying differen-
tiable 4-manifold of S then the intersection

sK(S)NsK(S') # 0. (2.22)

Thus, using the ‘first approach’ of the introduction we could prove that
S and S’ can be embedded in some projective space simultaneously, and we
could try to prove that they are deformation equivalent.

Recently P. Kronheimer and T. Mrowka announced, for a certain class
of simply-connected 4-manifolds M, the existence of a finite collection of 2-
cohomology classes K1, ..., K invariant with respect to the action of Diff M
(see [K-M]). Hence these classes generate a sublattice

KM(M) C H*(M,Z) (2.23)

which is invariant under the action of Diff M. R. Brussee has remarked
(see [B1]) that if M = § is an algebraic surface then the classes K, ..., K
are algebraic, that is, of Hodge type (1,1). This means that in case py > 0
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the sublattice K M(S) is proper. It would be rather interesting to compare
sV(S) with K M(S).

By Theorem 2 of [K-M], the collection of classes Ki,--- ,K, defines a
piecewise-linear seminorm on K M(S), estimating the minimal genus of a
smooth surface realising a cohomology class. On the other hand, the collec-
tion of classes (2.16) defines a convex seminorm in sV(S) with generators
which are realised as smooth Riemann surfaces of minimal genus. In some
sense these seminorms are dual.

Finally, E. Witten has announced recently that the Kronheimer-Mrowka
classes Ki,..., K, are precisely the classes of irreducible components of a
general canonical divisor on the algebraic surface S (see [W]).

In order to prove the shape theorem, we need to use the ‘geometric ap-
proximation procedure’ (GAP for short). First, though, we need to explain
the second reason for restricting oneself to the case ¢; = Kg, and how the
shape theorem implies the sV theorem. The main observation is that our
algebraic geometric picture is a slice of a much more general picture in the
set-up of Riemannian geometry.

3. SPACES OF JUMPING INSTANTONS

Recall that if the underlying smooth manifold of an algebraic surface
S is equipped with a Riemannian metric g then for every SO(3)-bundle
E of topological type (2,ws,p1) the gauge orbit space B(E) = A} (FE)/G
of irreducible connections contains the subspace M9(2,ws(S),p1) C B(E)
of anti-self-dual connections with respect to the Riemannian metric ¢, ori-
ented by the choice of the lift to the anticanonical class —Kg of the Stiefel-
Whitney class w2(.S), and by an orientation of a maximal positive subspace
in H%(S,R). This space determines via the slant product the homogeneous
polynomial
v%(2,Ks,p1) € SY(H*(S,Z)® H*(5,2)) (3.1)

(see [D], [D-K]).

These polynomials behave naturally under diffeomorphisms of S. Namely,
if p; > 0 then for any o € H?(S,Z), and for any ¢ € Diff S preserving the
orientation of a maximal positive subspace in H%(S,R), we have

79(2aKSap1 )(0) = 79(2, KS,PI )(¢(0)) (3'2)

This means that some aspects of the shape of the polynomials are invariants
of the smooth structure of the 4-manifold.

Now a new system of invariants of the underlying differentiable structure
of 4-manifolds was proposed in [P-T], [T1] and [T2] . These so-called spin
polynomial invariants will be used to prove the sV theorem.
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Recall that if we consider the anticanonical class —Kg as a SpinC-
structure on S (see [P-T], [T1] or [T2]) equipped with a Riemannian metric
g then for every U(2)-bundle E of topological type (2,¢;,c2) the gauge
orbit subspace M9(E) C B(E) of anti-self-dual connections contains the
subspace:

M2Ks (E) = {(a) € MI(E)|rankker D; ¥5:90 > 7}, (3.3)

where D K5,V is the coupled Dirac operator (see [P-T]) with a Hermitian
connection V7o on the line bundle with first Chern class —Kg (see [P-T],
[T1] or [T2]).

This space determines by slant product the homogeneous polynomial

sr,),g,—Ks (2a €1, 02) € Sdl(H2(S’ Z) ® H4(S$Z))' (34)

These are the so-called spin polynomaials (see [T1] or [T2]).

Actually the space M%~Xs(E), and therefore also the polynomial (3.4),
depends only on the pair (—Ks + c1,p1). This means that if py(S) >
0 then the polynomial s,v#:¢(2,—C,c;) is an invariant (up to sign, of
course) of the smooth structure of S. Or, more precisely, for any o €
H?%(S,Z) and any ¢ € Diff S, preserving the orientation of a maximal posi-
tive subspace in H2(S,R), we have

sr79 K5 (2, Ks,03)(0) = 5,72 755(2, K5, c2)(¢(2)). (3.5)

Fortunately, this equality holds even if py(S) = 0. Namely (see [T4] and
[T6]) the polynomials s,vf:¢ (2, —C, c,) are invariant up to sign under dif-
feomorphisms if —K% < 8(r — 1).

Thus to get differential geometrical information, one must restrict oneself
to the equality ¢; = Ks and investigate the geometry of the moduli spaces of
stable vector bundles and torsion-free sheaves of topological type (2, Kg, ¢z );
that is, O and the almost canonical spin polynomials. Moreover it is easy
to see that if

579 K5(2,Kg,¢5) € SO (g5, K5, Ch, ..., Cn(sy),

rank (Ks, C1, ..., Cn(s)) < rankH?*(S,Z) — 2

then the sublattice (K s,C1,...,C N(5)> contains some diffeomorphism in-
variant sublattice (which may be <Ks, Chyenny CN(5)> itself).

Now, if a Riemannian metric ¢ is a Hodge metric gy, then the Donaldson
Identification Theorem says that

MI(E) = MH(2,¢1(E), ca( E)), (3.6)
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i.e. the moduli space of H-slope stable vector bundles, and making the
identification (a) = E, we have the following identifications of the kernel
and cokernel of the coupled Dirac operator:

ker D;Xs = H*(E) ® H*(E), (3.7)

coker D7 ¥s = HY(E).

In our particular case, where ¢;(E) = Kg, we have a skew symmetric iso-
morphism E = E*(Ks) and Serre duality provides an identification

H'(E)= H*(E)",
and a nondegenerate symmetric quadratic form
ge: HY(E) - HY(E)*. (3.8)

This means that a jumping A° implies a jumping h? and the theta locus
has nontrivial multiple structure; that is, as a subscheme, it has nilpotents
and it is not reduced. Fortunately, however, we can describe the scheme-
theoretic structure precisely (see [T4] and [T6]). In the simplest case r =1
the normal cone of the theta locus O, at E € O is the light cone of the
quadratic form (3.8).

From this and a comparison of the Gieseker and Uhlenbeck compactifi-
cations (or, more precisely, a repetition of Morgan’s arguments from [M])
we obtain the Identification Theorem.

Proposition 3. If p,(S) > 0 or K% > 0 then

51798 Ks(2 Kg,c3) =2 ave (3.9)

cp~c2(5)’

The proof of this coincidence is contained in [T6] (see also [T4]).
Now, to get the sV theorem as a corollary of the shape theorem, we need
to combine this proposition and the property (3.5) with the following fact.

Nondegeneracy Theorem. If S is a simply connected surface of general

type then
ave, #0  for k> 0. (3.10)

We will prove this theorem as a partial result of the geometric approxi-
mation procedure.

As a corollary of the nondegeneracy theorem we obtain nontriviality of
the sV lattice: indeed, if the almost canonical spin polynomial satisfies

ave, € Sv'dime"(qs), (3.11)
then for some (2,0)-form w one has

ave,(w + @) # 0,
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but this contradicts (2.15) for large k. Thus the diffeomorphism invariant
sublattice in (Ks, C1, ..., CN(5)> is nontrivial.

Now we can explain the remark following proposition 2. In [P1], instead
of § and § Pidstrigach considered a 4-manifold of type M, = M#N where
M is a simply connected 4-manifold with b5 > 1, and N is any negative
definite 4-manifold with rank H?(N,Z) = n. He announced the following
result:

Proposition. Any spin polynomial of M, is a linear combination of spin
polynomials of S with polynomials in linear forms and the intersection form
on H*(N,Z).

We now need to discuss the geometric approximation procedure for de-
scribing the shape of an almost canonical spin polynomial. It consists of a
number of steps, and we describe them one by one.

4. FIRST STEP OF GAP

First of all, we recall the construction of the geometric approximation
GAOY for the O locus (see [T1] and [T5]). This variety is a complete
intersection in the projectivisation of a certain standard vector bundle on
the Hilbert scheme of S and one can compute the polynomial for this family
of torsion-free sheaves easily.

Remark. We shall only recall this construction for the H? part of the
polynomial (see [T1] and [T5]), as the general construction is exactly the
same.

e Z4C S xHilb?S, with Zz0 (S x {¢}) = {¢}, (4.1)
be the universal subscheme, and
Zy
Ps 7 \FH (4_2)
S Hilb? §

be the two projections, induced by the projections py and pg of the direct

product S x Hilb? .
For any divisor class D € Pic S consider the vector bundle

£h = R°py(P50s(D)). (4.3)

This sheaf is locally free because the canonical homomorphism is surjective.
Let H be the divisor class of the Grothendieck sheaf Ore;, (1) on the pro-

jective bundle PE} — Hilb? § associated with £§). Each section s of £
corresponds to a section 3 of Ope;, (1).
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The restriction homomorphism H°(Og(D)) —» H°(£) can be written
as the composite

H°(05(D)) ® Omiy — H(ED) ® Oy, — €5,

That is, any section s € H°(Og(D)) defines a section res(s) of the vector
bundle £f, and a section res(s) of Opey, (1).

If $1,-+ ,Sh0(0(D)) is @ basis of the space of sections H°(Og(D)) then
the intersection of divisors

h?(O(D))
0,0E4,D-ks = H—— C P& (4.4)

Tes(8i)
=1

is the space of all nontrivial extensions of type

0—»05—>E—>J5(D—Ks)—>0, (4.5)

up to C*, for all ¢ € Hilb S (see [T1)) if H'(O(D)) = 0. To describe the
space of all nontrivial extensions of type (4.5) in general we have to consider
the projectivisation

Pp = P(H'(O(D)) ® Opey, @ Opey, (1))

of the vector bundle on P£}, and its restriction to the complete intersection

(4.4):

0,0E4,0-Ks = Pp|no . (4.4
s |n:_-=§0(v)) Hers )
For example,
hO(2Ks)
GAOY 5= [) Himgy C PEk, (4.5')

=1

is a first geometric approximation to ©4_c,s) (see [T5]) for a minimal
surface S.
It is easy to see that if the hypersurfaces (4.5’) are in general position
then
dim GA®} = v. dim O (4.6)

Now ¢,0E4,p-K is the base of the universal family of torsion-free sheaves
given on the direct product S X ¢,0E4,p—ks as the universal extension

0—plOH)—E — (idx1)'Tz @ p50s(D — Kg) — 0. (4.7)

(For the cocycle of this extension see the diagram (4.25) and (4.28) from
[T1].)
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By the slant-product, E defines, as a family of sheaves, a polynomial
90, 0E4,p-xg: Damely, we can consider the (2,2)-Kiinneth component ug

of the class
4co(E) — c3(E) (4.8)

as a cohomological correspondence

pE : H*(S,Z) —» H*(00E4,p-K,Z). (4.9)
From (4.7), we have for any ¢ € H%(S,Z),

pE(o) = 47*(G) + 2(o - (D — Kg))H, (4.10)

where 7 is the standard projection of ¢ 0 E4,p— K to Hilb. We need to recall
that the universal subscheme (4.2), as an algebraic correspondence, defines
the cohomological correspondence

pmiw : H2(S,Z) — H*(Hilb, Z), (4.11)

o = umip(0).

Roughly speaking, if a fundamental 2-cycle o is given as a smooth oriented
surface ¥ then the fundamental class & of pmib(o) is given as

& = pgin(9) = [pmin(o)] = {£ € Hilb [Suppf N T # 0}.

In other words, & contains the clusters £ = p; + - -+ + pg such that at least
one point p; is contained in .
Now the value of our approximation to the spin polynomial at ¢ is the

intersection number

98Y(0,0Fe.p x4 )(0_) — (47r*(;) +2(0 (D - Ks))H)chm(o,oEd,D—Ks )Hho(o(D))

(4.12)
of 2-cocycles on ]P’Eﬁ*. In particular, the value of our approximation to the
almost canonical spin polynomial at ¢ is the intersection number

gav03(0) = (47°(3) +2(0 - Ks)H) 4™ O* A CKs), (4.12')

(Here, as usual, £ = d — ¢2(S5).)

Definition 5. The polynomial (4.12) is called the geometric approxima-
tion of the almost canonical spin polynomial.

It is easy to see that for k > 2p4(S) — c2(S) one has

dim GA®} = v.dim O
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and GAOY is irreducible (see [T5)).
Now using (4.12), the projection formula

7r»‘(z,_')_]'IIclimll”f—j — ;jW*Hdim lP’f—j,
and the definition of the Segre classes s,(€) = T HTOrkE-14n e have in
the final analysis
90Y(0,0Ea,p-Kg )(’7) = 26((D - KS) ' 0)6_2d

2d . . (413
xZZJG)((D—KS)-a)“"s2d_,-(8,‘§)7ﬂ, (413

where
6§ =3d—1-hr"O(D)) = dimooEsp—k,-
In particular (see [T5]) we obtain the following result.

Proposition 3. If GAOY has the expected dimension and k > K2 +
(pg(S) + 1) — ca(S) then

9‘1’)’09,, (0,) = 2v.clim9;c (KS . 0_)d—K§—p,—2

xf:Zj v-dimOR) po . oyd-igy_ (g )5
j S 2d—j\C2K;

i=0

(4.13)

where d = 02(5) + k.

One can see that if £ >> 0 then the geometric approximation of the almost
canonical spin polynormnial is divisible by the linear form Kg.
To see the shape of our approximation of the spin polynomial it is enough

to remark that ga'yg oFap-xg is a superposition of the standard polynomials

y SY+k\~3
PLD)0) = szcy8)+ak—i(ER D),

and to use the following result.

Ellingsrud’s Proposition. pi(D) € S’(¢s, D). In other words, these
polynomials are polynomials in the intersection form ¢s as a quadratic form,
and D as a linear form.

Hence, gaye, are polynomials in the intersection form ¢s as a quadratic
form and Kgs as a linear form. Now one can see the shape of the poly-
nomials (4.13) and of the first approximation of the almost canonical spin
polynomial: _

99Y(0,0Ea,p-x5) € $'(¢s,Ks, D), (4.14)

9076, € (¢, Ks).

To get the almost canonical spin polynomials we have to apply a chain
of elementary transformations to these families of sheaves and polynomi-
als. In the next section we shall describe the centres of these elementary
transformations for the case of spin canonical polynormials.
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5. BEGINNING OF THE CORRECTING PROCEDURE: CROSSES

A nonruled algebraic surface S carries a finite set of nonempty complete
linear systems

{|0i|}i=0,1,...,N such that 2C; - Kpin < Kr%\in' (5.1)
The set (5.1) admits the following order:
|0|; {E‘-}"=1:"':N—l; {E;}j=1:"':N—2; (5'2)

where E; is a (—1)-curve; E; is a (—2)-curve of the minimal model. It is
easy to see that these curves are determined by the equality C; - Knjn = 0.
Moreover, the positive semigroup P_, _; generated by the finite collec-
tion of all exceptional curves acts naturally on the set (5.1). Up to this
action we have the subset of the algebraic canonical walls (see [T5]),

{ICnl}n=0,1,... ,Nu> C2 < 0; (5.2")

and the finite set
{|Cm|}fn=1,,,_,1v,,a Cir>0 (5.2")

of inverse images of curves of degree < 3N - K2, on the canonical model
of S.

If a sheaf F has a regular section (that is, its zero set does not contain
a curve), then F is contained in GAO}. Hence a priori we have lost in this
family the sheaves with no regular sections. By the stability condition, a
curve from the zero set of a section is contained in the collection (5.1). Hence
for every class of (5.1) we need to consider the full collection of nontrivial
extensions of the type

0— 05(C;) = F = Je,(Kg — Ci) = 0.

At this point it is very convenient to introduce some special notation.
Namely, let

dl,DlEdz,Dz = {0 - Jfl(Dl) —F— sz(D2) - 0}/(:* (53)

be the set of all nontrivial extensions for all clusters ¢; € Hilb%, with i = 1,2.
This set has the projectivisation of the vector space Ext'(Je,(D2), J¢, (D1))
as fibre over (£1,£2). In particular (see (4.5)),

GAO} = 0,0Ec;(5)+k,Ks>

and as the geometric approximation of © we have to consider the union

GAO; = U 0, Eey(s)+k-CiKs +C2, Ks -G+
220
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It is easy to see that each variety of this union is a component, that is,
its dimension is > v.dim Q. It is natural to denote these components by

(".
GAOIC t= Oa(_iECQ(S)+k—(_.'-Ks+(?-,Ks -G

= 0,0Ec,(5)+k-Ci K +C2,Ks -2y

and for every component the polynomial is of the type (4.13). This poly-
nomial is

ga")’(‘:)_:c € Sj((IS»KS» Ct)

Now we need to remove from every component the subset containing
nonstable bundles, and for this we need to introduce a second notation: let

dy,D} 2Dy _

dl,DICRjgzDg = (4,0, E4,,0,) N (4,0, Eas, D3 (5.4)

be the set of all diagrams of type

(called a cross for short), where ¢; € Hilb% S and 7 € Hilb% S. Obviously
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a cross can be extended to a diagram

T v T
0— Jey(Dh) — F —  Je,(D2) = 0 (5.6)
T T o/ T
0 = (D) = Jn(D1) =0
1 t
0 0

where C is an effective curve such that
C=D,-Dy=D),—-D (5.7)

as a divisor class. This effective curve is the zero locus of the reflexive hull
of the homomorphisms

¢: J’ll(D:Il) - sz(D2)
¢'+ Je,(D1) = Jny(D3). (5.8)

Moreover, we have the cycle u which is a subcycle of C determined by
the diagram

0 0 0
! ! !

0= Jn(D1) — Je(D2) —  Ocle) —0
! ! !

0o Os(D)) — Os(D:) — OHDy) —0 (5.9)
l ! l

0= On(D1) — Ofu(D2) — Ou(Dz) —0

! ! |
0 0 0
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This means that every cycle can be represented as a sum:
i =i+
E=6+¢ (5.10)
where ¢ and 51‘-_ are the maximal subcycles contained in C. Then
m=& &=mn
e=C-Datn —& =C-Dy+& —n;
p=& —ny =n; =& (5.11)
as divisors classes on C.

In the particular case when we need to describe nonstable bundles be-
longing to components of GAOy, we have

D, =Ci D;=Ks-Ci, Dij=Ks—-C;-C, Dy=Ci+C (5.12)
but D} must destabilise our sheaf F', and so we have
2(Ks—C;—C)+ Kpin > K2;..

But this means that the effective curve C; + C is contained in our collection

(5.1) (and of course C is contained in it).
Now for the clusters we have the relations:

HCC = ¢ cC-C;

n=E&, & =11 +np (5.13)
as divisors on C'; and

GL=m, 0= +u
So to describe the nonstable locus of GAO; we need to use crosses of type

sy T TIOREE, (5.14)
where C; and C; are the classes from (5.1) such that C; + Cj is also a class
from (5.1), and where

dy=dy +dy +(Ks—Cj)- C; —2C; - Cj. (5.15)

This space is fibred over Hilb% S x |C}] :
m x oz GGG ORGCHG L Hilb% Sx |Cy],  (5.16)
and for the fibre of this fibration over (5,C) € Hilb% § x |C;| we shall write
CRES s (5.17)

d5,Ci+C; dy, Ci+C
CRd:,‘}(st((_i = U CRd:,;(:—(C"
CelG|
This space is fibred over Hilb% C x Hilb%~% C:

p1 X py s CRIPST . - Hilb® O x Hilb% =4 ¢ (5.18)

where p; sends a cross to 72 and p; sends a cross to £5 .
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Proposition 4. The map of CR to the direct product of all targets of
arrows is an isomorphism.

Proof. First of all, see [T1] and [T5] for Hilb? C, the subscheme of clusters
contained in C. Namely, the section s € H°(Og(C)) which cuts out C
defines a section 3 of the standard vector bundle £~ on Hilb S (see (4.3))
whose zero-scheme

(3)o = HilbC (5.19)

is the subvariety of Hilb § containing the clusters lying on C.
Now if |C] is a linear system, write

Hilb [C|= | HilbC’ (5.20)
el

for the union of all clusters lying on curves C’ € |C|. As a cohomology class,

[Hilb C] = crop(£c) (5.21)

and

[Hilb |C]] = cm(Ec) (5.22)

where

m = rank £ — h%(Os(C)) — 1.

It is enough to prove proposition 4 for the particular case when 7, = 0,
i.e. for the fibre of m; (5.16). We need to recall that any homomorphism

¢¢ : Os(Ks — Ci — Cj) = Je,(Ks — Ci)
can be lifted to a homomorphism Og(Ks — C; — C;) — F in the horizontal

short exact sequence (5.5), if and only if the element e € Ext!(J,, O5(2C; —
K3)) which defines the extension (5.5) is in the kernel of the homomorphism

Ext!(Je,, 0s(2C; — Ks)) 25 Ext!(0s(=C;), 05(2C; — K5))
induced by ¢. But this kernel is
ker ¢' = Ext'(O(—¢&2), 0s(2C; — Ks)) (5.23)
and by Serre duality

Extl(O(—(—éz),Os(ZC,' - Kg))* = Extl(Os(ZC,- - Kg),Oc(Ks|c — &)
= H(O(2(Ks)|c—2Ci - C = &))
= H(OA((C)* +2Ci- C + (¢2 — Ks|c))*
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Thus
(&) = |(C)* — Ks- C +2Ci- C + & (5.24)

It is easy to see that in our cross the horizontal extension is given by the
element

m2 € (C)? —Ks-C +2C;-C + &), (5.25)
which proves proposition 4.

The map of a component (5.14) to G'A@i_‘ induces a map
e: Hilb% § x Hilb%~% ¢ — Hilb% %42 g, (5.26)

This is the restriction of the Ellingsrud map (see [P-T]) to Hilb C and it is
easy to prove that in this case the map is regular. Hence we can describe
the space of crosses and its normal bundle as a subscheme of a component

of GAO over Hilb% § purely in terms of the geometry of the curve C or
of the complete linear systems [C}| (see [T5]). Namely, for a curve C, there
exists a universal subscheme, with its two projections

ZCcCxHilbC
e\ (5.27)
c Hilb C.

(See for example [ACGH], or Example 14.4.17 of [F].) Any divisor class
D € Pic C induces a standard rank d vector bundle

9 = Ry (P-Oc(D)) (5.28)
on Hilb? C, with fibre H°((),(D)) over n € Hilb? C.
The standard vector bundle on Hilb S (4.3) can be restricted to Hilb C
if C C S and for D € Pic S we have the equality
€. = Eblmun - (5.29)
Now CR:I::?:"_(:—'_ over Hilb%~4 C (see (5.18)) admits the same description

as GAOY over Hilb S. Namely CR323:. is the base subscheme of the
complete linear system on

Pg;;(tk—u_.- |Hi1b c= P(E{;}:_u—‘_)_(—) ® OHmiib (_)a
given by the rational map

P(E ke _aciy)” = P(HY(Oc(2Ks — 2C:))". (5.30)
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Hence, if the restriction homomorphism
r: H'(Os(2Ks — 2C;)) = HY(OA2Ks — 2C)) (5.31)
is an epimorphism then
CRIPH L = » ' (Hilb C) N GABL" (5.32)

N W*N . — . = W*g_ . _ 5.33
RS, cgapy T [VHIb CCHilb S Clmim ¢ (5.33)

CRIPSTSE =« \(Hilb |Cy]) N GAB,

N __a cic; = 7" NHilb || CHilb S (5.34)
CRyZ 2t caaes

and so on (see [T5]). Now to describe the partial modification of GAG;

along CR:I:’;(_"S-"_(}‘, we use the second projection p; of (5.18).

6. PARTIAL MODIFICATION AND REGULARISATION

Roughly speaking, thg partial modification of the component GAO;
along the component C R:::;(":_((i‘ is the blow-up of this subvariety in G AOy,
an ‘elementary transformation’ of the lift of the universal family E (4.7), fol-
lowed by a recomputation of the cohomological correspondence (4.10) and
of the new polynomial (or more precisely, of correction terms to it).

The geometric description of the blow-up of a component of CR was
given in section 5 over Hilb% S, and this information is enough to prove the
shape theorem. First, let

0'0,j3 ]PE;Ks—?(_.' - ]Pg;KS—2(_i (6'1)

be the blow-up of CR5 L in P&}k, .. Then the blow-up in GAOY’

of CRZ::?:_(}‘ is the intersection
—  h%(0s(2Ks-20%))
i
GAOS: = N H——

Tes(s;)

- P52Ks 2 (6.2)

i=1

where I}m is the geometric inverse image of the hypersurface Hm

under (6.1). Denote the exceptional divisor of this blow up by CR. Then
the projection p; of (5.18) defines a projection

idxp; : S x CR — § x Hilb% §. (6.3)
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Let Z' be the inverse image of the universal subscheme Z (3.1) under

this morphism. Then on the divisor § X CR of the variety S x mk, we
have the torsion-free sheaf (id x(00,;.71))*(Zz ® p5O0s(C; + C;)) and the
epimorphism of lifting of the restriction of the universal extension (4.7):

(id x00,7) Bl g — (id x(00;.91))" (T2 @ P30s(Ci + C)) = 0 (6.4)

(see the diagram (5.5)).
Remark. Actually if the linear system |C;| has positive dimension, then we
must twist the last sheaf by O|;|(1). It is easy to see that the cohomological
correspondence remains the same after such twisting,.

We can consider the epimorphism in (6.4) as an epimorphism of lifting

of the universal sheaf E to a torsion sheaf on § x GAO; which determines
an exact sequence:

0 — E' — (id x(00,;.p1))"E — (id x(00,j.p1))"(Zz @ P5O5(Ci + C;)) — 0.

(6.5)
Its kernel E is the ‘elementary transformation’ which we need and we thus
realise GAOy as the base of a family of bundles and torsion-free sheaves. It
is easy to see that its restriction to § x C'R is contained in GAO:

E|s.c5 C GAOL TS, (6.6)

Continuing this procedure step by step, ordering the system of curves by
the divisibility property, we obtain as the last step of this procedure the
family
e
E* — S x GAB, ,,, (6.7)

o (;
which does not contain nonstable sheaves, and GA© k,’st is the intersection

of type (6.2) in the result PE" of a finite chain of blow-ups of the projec-
tivisation of the standard vector bundle on Hilb. For the description of the
exact algorithm of elementary transformations of the universal sheaves we
use the notion of é-stable pair, where ¢ is some linear polynomial, intro-
duced by Huybrechts and Lehn in [H-L]. This description is contained in
Té6].

[ I]IOW before recomputing the new cohomological correspondence, we must
compute the fundamental class of the right moduli space if dim GAO§* is
greater than its virtual dimension. For this we need to use the regularisation
argument described in the last section of [T1]. Precisely the same arguments
as in Section 7 of [T1] give the following result.

N
Proposition 5. The fundamental class of the right moduli space in GAO,
is the class

(—2

M= () F (63)

m=1
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where H is the geometric inverse image of the class H (see (4.4)) with
respect to the chain of blow-ups.

Now we are ready to recompute the polynomial provided by this compo-
nent step by step.
It follows from the exact sequence (6.5) that

pp (0) =45 + 2((Ks — Ci) - 0)Hm —2((Ks — C; +2C;) - 0)CR,  (6.9)
and we have a new polynomial

94;79c:(0) = (47*(5) + 2(o - (Ks — C:))H

—2(Ks — C; +2C;) - 0)CR) " mO=¢F (6.10)
x (H — C‘rﬁ)h“(os(zks—zc.-))ﬂ—?,

and the binomial decomposition gives
995790:(9) = gavgei(9) + CRX &

where

K42 vdim©,-C7 .
' RO + C?) (v. dim O — C?)
Y= ( : : (_1)P+‘12‘]
L X ;

p+g¢—1 (611)

x (((Ks — C;+2C;)-0)'CR™" g +Ci-r

’

. 2o
x (47*(5) + 2(0 - (K5 — Ci))H) 4™+~ ")
where h® = R%(Os(2Ks — 2C;)).

Now we can compute the correction term to the polynomial as the inter-
section of divisors on (3}('-’._‘5 R CR:::}":_(}‘); for this we need to lift all
divisors from the formula (6.11) to (::1(’—{( s CR:%:;(_‘:_(}‘). Let H' be

the Grothendieck divisor in PicPE~,C € |C}|. Then CR’ = —H' and
GHilb C = (C; - 0)Hschw (6.12)

is the Schwarzenberger divisor (see [ACGH)).
Now we compute the correction sum in (6.11) on the exceptional divisor
over
d,Ks—-Ci—=C; d5%,Ci+C
011(_-‘ ’ ’ CRd:st -(J_-'
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as the relative product described in (5.18), (5.32)-(5.34). Fibrewise this
computation coincides with the computation in [T5] (formulas (4.39)-(4.42)).
Using (6.12) we get the correcting sum in the form

E anmk(a' . O')n(Ks . a)m(cj . O')k(C,' . a.)v.clim ek—2n—m—k’ (613)

where the constants anm,i arise from the products of Segre classes of the
standard vector bundles on Hilb S and Hilb C for all curves from (5.1) and
the binomial coefficients.

Repeating these arguments for all possible combinations of the finite
chains C'UC" U---U C™ of curves from (5.1) whose union is contained in
(5.1) and all possible combinations of degrees of clusters gives the proof of
the shape theorem (2.18).
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Introduction

Belavin-Polyakov-Zamodolochikov ([BPZ]) initiated conformal field the-
ory as a certain limit of the theory of the two-dimensional lattice model.
This theory has a deep relationship with string theory and a rich mathemat-
ical structure. It is a two-dimensional quantum field theory invariant under
conformal transformations; in fact, as we shall see below, it is invariant un-
der a much bigger group of transformations, and this gives a relationship
with the moduli space of algebraic curves ([FS], [EO]).

A typical example of conformal field theory is abelian conformal field
theory, the theory of free fermions over a compact Riemann surface. For
a mathematically rigorous treatment of abelian conformal field theory we
refer the reader to [KNTY]. This theory has a deep relationship with var-
ious fields of mathematics, such as the moduli theory of algebraic curves,
KP hierarchy, theta functions, complex cobordism rings and formal groups
([KNTY], [KSU2], [KSU3)).

For non-abelian conformal field theory the first mathematically rigor-
ous treatment was given by Tsuchiya-Kanie ([TK]), who constructed the
theory over P!. Later Tsuchiya-Ueno-Yamada ([TUY]) generalized this to
algebraic curves of arbitrary genus.

Let us explain briefly the main ideas of conformal field theory. It can be
decomposed into two parts, holomorphic and anti-holomorphic, and in the
following we shall only consider the holomorphic theory. This is often called
chiral ¢conformal field theory by the physicists.

Let € be a complex coordinate. An infinitesimal conformal transforma-
tion is expressed in the form

(1) §m E+ef(§)

where e is the dual number z mod (2?) in C[z]/(2?), and f({)% is a local
holomorphic vector field. Let us choose special vector fields

(2) en=§"+1%, n=-1,0,1,2,...,n,....
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These vector fields then satisfy the following commutation relations:
[lm,ln] = (m—n)lmin.

Thus, {¢s}n>-1 forms an infinite dimensional Lie algebra.

Note that {€_1, €o, ¢1} forms a Lie algebra isomorphic to sl(2, C). This is
the Lie algebra of linear fractional transformations of the Riemann sphere
P!. Conformal field theory will thus be invariant under such transforma-
tions.

The most important feature of conformal field theory is the condition
imposed by physicists that the theory should be invariant not only under
the transformations (1), but also under the same transformations where
f(¢ )die is a local meromorphic vector field ([BPZ]). This is, of course, no
longer an infinitesimal conformal transformation; however, we may interpret
such a transformation as an infinitesimal change of complex structure. In
this way conformal field theory is related to the moduli theory of algebraic
curves. We need to generalize the Lie algebra {£,} by adding negative
powers of £ in (2).

As we said at the beginning conformal field theory is a kind of quantum
field theory. This means that it has infinitely many degrees of freedom and
divergence appears, so we need to renormalize the theory. Renormalization
is very simple in our case. It can be done by using the normal ordering of
operators, which we shall explain below. Renormalization induces a central
extension of the infinite Lie algebra {¢,}, called the Virasoro algebra.

The Virasoro algebra {L,} has the following commutation relations:

[LnyLm] = (1= m)Lppm + é(ﬁ —n)-id.

The number c is called the central charge. Then, conformal invariance of
the theory is expressed by the commutation relation

[La, X(2)] = z"(z% +n+1)X(2).

This means that the field X(z) behaves like a meromorphic one-form on a
Riemann surface. (A more precise formulation will be given in Chapter I
§1.2 (c) below.)

Conformal field theory can be formulated not only over a compact Rie-
mann surface but also over a semi-stable algebraic curve, that is, a complete
curve with at worst ordinary double points as singularities. These singular
curves correspond to points on the boundary of the moduli space of smooth
curves. Precisely speaking, we need to consider pointed stable curves.

Let C be a semi-stable curve of genus g. To formulate conformal field
theory we also need a set A of labels which describe basic particles (or
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‘primary fields’, as physicists call them) on the curve C. There is a distin-
guished label 0 € A which corresponds to the state without particles. Also
we assume that the set A has an involution

1t A=A,

where A! describes the anti-particle of the particle corresponding to A € A.

Usually the set A is related to certain representations of the infinite di-
mensional Lie algebra or more general algebras describing symmetry of the
theory. In conformal field theory with gauge symmetry (which for simplicity
we will call non-abelian conformal field theory) the Lie algebra is an affine
Lie algebra associated with a simple Lie algebra. In the following we shall
also give a sketch of an abelian conformal field theory, which is a generaliza-
tion of the usual abelian conformal field described in [KNTY]. In this case
we take as our algebra the one generated by vertex operators and an affine
Lie algebra attached to the one-dimensional abelian Lie algebra.

Let us choose N smooth points @1, @2,... ,@n on the curve C with
local coordinates {; with center @);. Assign an element A; of the set A to
each point ¢);. We also fix a local coordinate £; with centre Q.

Conformal field theory is a theory which now attaches a certain finite
dimensional vector space—the ‘conformal block’—to the data

X=(C;Q1,Q2-.-,Qn;61,62,... ,EN)

and X = (A1,X2,.- , An) € A®N. The conformal block V(%) satisfies the

following conditions.
1) Let P be a smooth point on the curve C with coordinate 5. Put

§= (C;QI»Q%"' y@n, P31, 6, .. »§N»77)'

Then, there is a canonical isomorphism
t ¥y~ pt
nyo(.”f) o~ Vx(.”i).

2) Let v : € — C be a normalization of the curve C and Py and P-
be the inverse image of a double point of C, with local coordinates 94, 7—,
respectively. Then, there exists a canonical isomorphism

1 ¥y ~pt
DV, (® =vi®
reEA

where we put

§= (G;QI’Q%"' aQNaP+»P—;<1a"72"" »CNa77+»77—)'
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3) dim V;(.'i) depends only on the genus of the curve C', the number N

of the points @; and X.

4) The collection @[351 V}(.’x") over the moduli space of N-pointed curves
forms a vector bundle and it carries a projectively flat connection with
regular singularities along the boundary consisting of the locus of N-pointed
singular curves.

The conformal block is also called the ‘space of vacua’ ([TUY]) or ‘mod-
ular functor’ ([S]). The above property 2) is often called factorization of
conformal blocks and physically it is used to construct conformal field the-
ory. The property 2) gives a way to calculate the dimensions of conformal
blocks by reducing to the case of three-pointed P!. This is a combinatorial
problem and not easy to calculate. The best way is to use the Verlinde
formula, first conjectured by Verlinde ([Ve]) and proved in ([MS1]).

The above property 4) is a vague statement. The conformal block V}(.’i)
depends on the choice of local coordinates ¢; at the point ¢); and one can
show that it only depends on the first-order infinitesimal neighbourhood of
each of the points. Therefore, we need to take as our moduli space that of N-
pointed stable curves together with first-order infinitesimal neighbourhoods.

In the present notes we shall briefly explain a method of constructing
the conformal block for conformal field theory with gauge symmetries with
simple Lie algebra as gauge group, and for abelian conformal field theory.
We shall follow [TK] and [TUY]: this method is often called operator for-
malism. It is a primitive but direct way to construct the theory by following
the physicists’ description. It also gives a mathematically rigorous interpre-
tation of the physical theory. There are other approaches ([H], [BL], [BF],
[Fe], [KNR], [Ku] ), which give descriptions of the conformal blocks differ-
ent from ours. Finally, it is an important problem to generalize the integral
representation of conformal blocks of N-pointed P! given in [BF] and [Ku]
to those of N-pointed curves of genus g > 2.

The details of our arguments on non-abelian conformal field theory can

be found in [U].
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Chapter I Conformal Field Theory with Gauge Symmetries
§1.1 Affine Lie algebras and integrable highest weight modules

In this section we recall basic facts on integrable highest weight represen-
tations of affine Lie algebras. Then we shall define the energy momentum
tensor which plays an important role in conformal field theory. For the
details of integrable highest weight representations of affine Lie algebras we
refer the reader to Kac’s book [Ka).

a) Affine Lie algebras

Let g be a simple Lie algebra over the complex numbers C and § its
Cartan subalgebra. By A we denote the root system of (g,h). We have the
root space decomposition

8=h8 ) ga

a€A

Let by be the linear span of A over R. Fix a lexicographic ordering of b
once for all. This gives the decomposition A = Ay UA_ of the root system
into the positive roots and the negative roots. Put h* = hj ®r C, the linear
span of A over C. Let ( , ) be a constant multiple of the Cartan-Killing
form of the simple Lie algebra g. For each element of A € h*, there exists a
unique element Hj € h* such that

A(H) = (Hx, H)

for all H € h. For a € A, H, is called the root vector corresponding to the
root a.
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On h* we introduce an inner product by
(1'1'1) (’\uu) = (HA,HIL)'

Let us normalize the inner product ( , ) and callit the normalized Cartan-
Killing form. Let 8 be the highest (or longest) root, that is,

0€A+, 0+0[,¢A

for all simple roots «;. For example, the highest root of the simple Lie
algebra of type A is given by

The normalized Cartan-Killing form is given by the condition

(1.1-2) (6, 6)=2.
Note that the Cartan-Killing form has the following property.
(1.1-3) (X, Y], Z)+ (Y, [X, Z])=0.

By CJ[¢]] and C((£)) we mean the ring of formal power series in ¢ and
the field of formal Laurent power series in £, respectively.

Definition 1.1.1. The affine Lie algebra g over C((¢)) associated with g
is defined to be
g=980C(({))8Cc

where ¢ is an element of the center of § and the Lie algebra structure is
given by

(1.1-4) (X ® f(£),Y ®9g(§)] =
[X,Y]® f(£)9(8) + - (X, Y) Res(g(£)df ()
for
X,Yeg, f(&) 9(8) € C((£)
Put
(1.1-5) 8+ =0@C[E]lE, -=g®ClE]E"

We regard g+ and §— as Lie subalgebras of §. Also in the following we often
identify g and g ® 1 so that we may regard g as a Lie subalgebra of §. We
have a decomposition

(1.1-6) §=0+096Ccd3-.

In what follows we use the following notation freely.

X(n)=X®¢", X€g, nel
X=X0)=X®1
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Remark 1.1.2. Note that usually the affine Lie algebra is defined by using
Cl¢, 7). Namely, put

Besr =8®ClE7BC ¢
with commutation relation (1.1-4). Put

g+ =8QC[¢E.

This is a Lie subalgebra and we have
Basf =0+ G OC-cOF-.

Moreover, the Lie algebra g is contained in the ¢-adic completion of g..

b) Integrable highest weight modules

Let us recall briefly the representation theory of a simple Lie algebra
g. An irreducible left g-module V) is called a highest weight module with
highest weight A, if there exists a non-zero vector e € V) (called a highest
weight vector) such that

He=MAH)e, Xe=0 forall X €g,, a€A,.

It is well-known that a finite dimensional irreducible left g-module is a
highest weight module and two irreducible left g-modules are isomorphic if
and only if they have the same highest weight. A weight A € hg is called
an integral weight, if

2(A @)/ (e, a) € Z

for any @ € A. A weight A € by is called a dominant weight, if
wA) <A

for any element w of the Weyl group W of g. By P, we denote the set
of dominant integral weights of g. A weight A is the highest weight of an
irreducible left g-module if and only if A € Py.

Let us fix a positive integer £ (called the level) and put

Pp={Ae P |0L(8,)) <t}
Let us introduce the involution

1:Pp— P
A At
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by
At = —w(}))

where w is the longest element of the Weyl group of the simple Lie algebra
g. Note that A is also characterized by the fact that —At is the lowest
weight of the g-module V).
For each element A € P, the Verma module M) is defined as follows.
Put
P+=8+980C-c.

Then P4 is a Lie subalgebra of g. Let V) is the irreducible left g-module of
highest weight X. The action of p; on V), is defined as

cv=4v forallvel,
av=0 foralla€gy andv e V)

Put
(1.1-8) My = U(ﬁ) ®3+ V.

Then M, is a left g-module and is called a Verma module. The Verma
module My is not irreducible and contains the maximal proper submodule
J». The quotient module H) := M) /T has the following properties.

Theorem 1.1.3. For each A\ € P,, the left g-module H is the unique
left §-module (called the integrable highest weight g-module) satisfying the
following properties.
(1) Vo = {|v) € Ha| @+|v) = 0} is the irreducible left g-module with
highest weight ).
(2) The central element c acts on Hy as £-id.
(3) H. is generated by V) over §— with only one relation

(1.1-9) (Xo @€Y~V =0

where Xy € g is the element corresponding to the maximal root
and |A) € V), is the highest weight vector.

The theorem says that the maximal proper submodule J) is given by
(1.1-10) Ix =U(p-)|J»)
where we put
(1.1-11) |7a) = (Xo @ €117 (ONF1 ).

For the details see Kac [Ka, (10.4.6)].
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Similarly we can define the integrable lowest weight right g§-module ’HR

which will be discussed in below.

c) Energy momentum tensor and Virasoro algebra

Next we shall define the energy momentum tensor and the Virasoro al-
gebra. For that purpose we introduce the following notation.

= E X(n)z7"!

neZ

where z is a variable. The normal ordering § § is defined by

X(n)Y(m)v n < m,
9X(n)Y(m)3 = %(X(n)Y(m) +Y(m)X(n)) n=m,
Y(m)X(n) n > m.

Note that by (1.1-4), if n > m and X =Y, we have

(1.1-12) 9X(n)X(m)3 = X(n)X(m) — nbpimo(X,Y)-c.
Definition 1.1.4. The energy-momentum tensor T(z) of level £ is defined
by
1 dim g
— O 7a a o
() = 570 Z_j ST} ()8

where {J!, J2,...} is an orthonormal basis of g with respect to the Cartan-
Killing form ( , ) and ¢* is the dual Coxeter number of g.

Put

dim g

0 +£)E ZOJ“ (m)J*(n—m)$.

meZ a=1

(1.1-13)

Then we have the expansion

— E an—n—2

n€EZ

The operator Ly, is called the Virasoro operator which acts on . By (1.1-
12), if n # 0, in the definition of L,, we need not use the normal ordering,
that is, we have

dim g

L= T +e) Y ) I myI(n —m).

meZ a=1
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For n = 0 we need the normal ordering to define Ly. The operator

dimg

2 +e) >N I(myIe(—m)

meZ a=1

cannot operate on H,. The operator Ly is a generalization of the Casimir
element of the simple Lie algebra g

dimg

Q= Z JeJge
a=1

to the affine lie algebra g. The Casimir element © belongs to the center of
U(g), hence acts on V) by

2(9" +0)Ay -id
where

_ N+ 1
(1.1-14.) M=y P EXA: a
a€ly

The following lemma can be proved by direct calculations. It plays an
important role in the theory.

Lemma 1.1.5. The set {L,} forms a Virasoro algebra and we have
[Ln, X(m)]=—mX(n+m), forXe€g

[Lny L] = (= M) ngm + —(n® = n)6ntm.0

12

where
_ Ldimg

Co =
g*+£
is the central charge of the Virasoro algebra.
Corollary 1.1.6.

[Ln,X(2)] = z"(zdi +n+1)X(2).

For X €g, f = f(z) € C((2)) and £ = K(z)— € C((z))— we use the

following notation.
X[f] = Res(X(2)(2)d2)
T4 = R_eg(T(z)Z(z)dz).
In particular, we have

(1.1-15) Lo = T[§di§].
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Lemma 1.1.7. X([f] and T[{] act on H) and we have

X[f] = X ® £(¢),
(1.1-16) (18, X[f]] = - X[,
(TIe, Tlml) = ~T([6, m]] + = Res(¢"'mds).

Remark 1.1.8. In the last formula of (1.1-16) we can use other expressions
based on the following equalities.
dz) .

b(z)m'(2)

R,es(fm(Z)m(Z)dZ) = — 1}33( ml“(Z)Z(Z)dZ) = % 1}:3 ( Z“(z)m“(z)

z=0

d) Filtration on H, and right g-modules

Next Let us introduce the filtration {F,} on H). For that purpose first
define the subspace H(d) of H) for a non-negative integer d by

(1.1-17) Ha(d) = {|v) € Ha| Lo|v) = (d + An)|v) }

where A) is defined in (1.1-14). Note that by (1.1-13), on V) the operator
Ly acts as

dimg

1 > JeIc) = ;mu) = Ay|v)

Lolv) = 35 70) 2 T

=1
for |v) € Hy. For a positive integer m and |v) € V), we have

LoX (~m)lo) = LoX(~m)lv) + mX(~m)[v)
= (A + m)X(~m)v).

Hence, we have X (—m)|v) € FpnH.
Similarly, for positive integers mi,... ,my, we have

L()X](Ml)"'Xk(_mk)lv)
=(Ax+my+ -+ mp)Xa (M) Xi(—mi)lv),  |v) € Vi

(From this, it is easy to show that H(d) is a finite dimensional vector space
and we have

Ha = P Ha(d).
d=0
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For a negative integer —d we put

Hi(—d) = {0}.
Now we define the filtration {F,H,} by

P
(1.1-18) FyHa =Y Ha(d)
d=0
Note that all the filtrations defined above are the increasing ones.
Put

(1.1-19) H} (d) = Homo(Ha(d), C).
Then the dual space ’HK of H) is defined to be

1.1-20 H! = Homgo(H»,C) = H*
by

By our definition 'HR is a right g-module. A decrea.sing filtration {F "'HR}
is defined by

(1.1-21) FrH) = [ #i(d)
d2p
There is a canonical perfect bilinear pairing
(1.1-22) (| Y:HxHy—C,
which satisfies the following equality for each a € §.
(ulav) = (ualv), for all (u] € ’HK and |v) € H,.
Note that the filtrations {F,} and {F?} define a uniform topology on

and ’HR, respectively. With respect to this topology ’HR is complete and is
the integrable highest weight right g-module with the lowest weight A. Put

vi={(leH| (vg-=0}.

It is easy to show that V; = 'HR(O) and V; is the irreducible right g-module
with lowest weight A\. The integrable highest weight right g-module with
lowest weight ) is generated by V; over g4 with only one relation

(Al(X—p @ €)M+ — g,
Lemma 1.1.9.
X(m)YHa(d) C Ha(d — m)
L H(d) C Ha(d —
HY(d)X(m) C Hi(d+ m)
HY(d)Lm C Hi(d +m).

In the similar manner we can introduce a filtration on the Verma module

M.
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Proposition 1.1.10. For a root vector X, € go of the simple Lie algebra
g and any element f(£) € C((£)) the actions of X, ® f(£) on My and M},
are locally nilpotent. That is, for elements |¢) € Hy and (| € H} there
exists a positive integer m such that for each n > m we have

(Xa ® fO)16) =0 (¥l(Xa® f(£))" =0.
In particular
Y S (Xe @ O
acts on M and H}.

Now let us introduce the left g-module structure on ’HR by
(1.1-23) X(n)(®| := —(®|X(—n).

It is easy to check that this indeed defines the left g-module strueture on
H).
Now we give the relationship between the left g-modules ’HK and H,t.

Lemma 1.1.11. There exists a bilinear pairing
(| Y:HxxHyt —C
unique up to a constant multiple such that we have
(X(n)ulv) + (u|X(—n)v) =0

forany X € g,n € Z, |u) € Hx, |v) € Hyr and ( | ) is zero on H(d) X
Hy(d"), ifd # d'.

Proof.  Since V) ® V)¢, considered as a g-module by the diagonal action,
contains only one-dimensional trivial g-module C|0, ), we have a bilinear
form (| ) € Homg(Vy ® Vjt,C) unique up to the constant multiple. As-
sume that we have a bilinear form ( | ) € Hom(F,H) ® FpyH,t,C) with
desired properties. For an element

X(—m)lu) € FpraHy, |u) € F,Hy, m>0
and an element |v) € Fy11H )t define
(1.1-24) (X(=m)ulv) = —(ulX (m)v).
Note that since X(m)|v) € Fpi1-mHjt, the right hand side is defined al-

ready. It is easy to show that in this way we can define the bilinear form
( | ) satisfying the conditions of Lemma 1.1.11. QED.
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Corollary 1.1.12. There is a canonical left g-module isomorphism
'Ht o~ ﬁ)\t

where 7/'2” is the completion of Hyt with respect to the filtration {F,}.

§1.2 Conformal blocks attached to N-pointed stable curves
a) N-pointed stable curves

Definition 1.2.1. Data X = (C; @1,Q32,... ,@n) consisting of a curve C
and points @,... ,@n on C are called an N-pointed stable curve, if the
following conditions are satisfied.

(1) The curve C is a reduced connected complete algebraic curve de-
fined over the complex numbers C. The singularities of the curve C are at
worst ordinary double points. That is, C is a semi-stable curve.

(2) ©1,Q2,...,Q@nN are non-singular points of the curve C.

(3) If an irreducible component C; is a projective line (i.e. Riemann
sphere) P! (resp. a rational curve with one double point, resp. an ellip-
tic curve), the sum of the number of intersection points of C; and other
components and the number of @;’s on C; is at least three (resp. one).

(4) dimc HY(C,00) = g.

Note that the above condition (3) is equivalent to saying that Aut(X) is a
finite group so that ¥ has no infinitesimal automorphisms. In the following
we often add the following condition (Q) for an N-pointed stable curve X.

(Q) Each component C; contains at least one Q;.

The meaning of the condition (Q) will be clarified in the following Lemma
1.2.5 and Lemma 1.2.6.

Definition 1.2.2, Let C be a curve and @ a non-singular point on C. An
formal neighbourhood s of C at the point @ is a C-algebra isomorphism

(1.2-1) s:0cq= lim Oc,q/mg™ ~ C[[¢])/(€"*)

where mg is the maximal ideal of O¢,g consisting of germs of holomorphic
functions vanishing at Q.

Definition 1.2.3. Data
X= (C;leQ27"' aQN; 81, 82,--- 73N)

are called an N-pointed stable curve of genus g with formal neighbourhoods,
if
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(1) (C; @1,Q2,--.,@n) is an N-pointed stable curve of genus g.
(2) s; is a formal neighbourhood of C at Q.

Let C be a semi-stable curve, that is, C is a reduced curve with at most
ordinary double points and proper over C. Let 3§ be a sheaf of Kahler
differentials of the curve C and we be the dualizing sheaf of the curve C.
Near a singular point P, the curve C is analytically isomorphic to the variety
defined by

zy =0.

By these coordinates the sheaf Q; is expressed as
(1.2-2) Q& = (Ocdr + Ocdy)/Oc(zdy + ydz).

On the other hand, near the singular point P the dualizing sheaf w¢ is an
invertible sheaf generated by the differential { given by dz/z outside z =0
and —dy/y outside y = 0. Moreover, outside singular points of the curve
C, the sheaves 0}, and w¢ coincide. Thus, we have

(1.2-3) Q¢ = mwe

where m is the defining ideal sheaf of the singular points of C. Hence, we
have the following exact sequence.

0—»910 — wc = we ® Ocs;,, — 0-

Let v : C — C be the normalization of the curve C. We let {Pr,..., P}
be the set of double points of the curve C and for each double point P;, put
v~Y(P;) = { Pi+, P;,— }. Then, we have the following exact sequence.

k q
(1.2-4) 0 - wec — V*“"C"(E(Pi:"‘ + F;,.)) 5 @ C-o0

where at each double point P;, the mapping r is given by

resp, ,(T) —resp, _(T).

This means that a local holomorphic section of the dualizing sheaf wc is
regarded as a local meromorphic section of one-form on C which has a
pole of order one at P;+ and P;_ such that the sum of the residues is
zero and holomorphic outside P; +’s. In the following we shall often use
this interpretation. The following lemma is an easy consequence of this
interpretation.

Lemma 1.2.4. Let 7 be a meromorphic section of the dualizing sheaf wc
holomorphic at the double points. Then the sum of the residues of T is zero.
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Lemma 1.2.5. Assume that an N-pointed stable curve

.”x":(C;Qth,... ,QN; $1,82,... ,SN)

with formal neighbourhoods satisfies the condition (Q). By t; we denote the
Laurent expansions at (); with respect to a formal parameter {; = sj_l(é).
Then, the following homomorphisms are injective.

(1.2-5)

N N
t=et;: H(C,0(x Y_Q,) — P C((&))

Jj=1 Jj=1
(1.2-6)

N N
t=ot,: H'(C,wo(* Y ;) — D C((&))dé;

j=1 j=1
where wc is the dualizing sheaf of the curve C.

N N
By this Lemma HD(C,O(*EQj)) (resp. HD(C,wC(*EQ,-))) can be
j=1 =1
regarded as a subspace of EB}V;C((@-)) (resp. @;y:IC((é,-J))déj). There is
the residue pairing
(1.2-7)
DL, C(&) x DL, C((&)de;  — C

N
((F(&0) - F(END, 9(E1)dEx, - 9(EN)dEN) = ) Res(f(65)9(65)d8s):

The following Lemma is well-known and plays an important role in our
theory.

Lemma 1.2.6. Under the residue pairing (1.2-7) the vector space
N
HY(C,0(+ 3 Q)
and the vector space J_A:
H(C,we(* Y Q)))

=1
are the annihilators to each other.

b) Conformal blocks

For an N-pointed stable curve X = (C;Q1,Q2, ... ,@N;71,72,--. ,1N)
with formal neighbourhoods let us define the conformal block (the space

of vacua in [TUY]) V;(.'f) and its dual space, the space of covacua V;(X)

where ) = (A1, A2,--. ,AN), A; € P,. For that purpose we first define &
generalized affine Lie algebra gy .
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Definition 1.2.7. Let g be a simple Lie algebra over the complex numbers.
A Lie algebra gy is defined as

N
v =Pe®c (&) ® Cc

Jj=1

with the following commutation relations.

N
(12:8) ((X; ® f), (¥ ® 95)] = (1X5, Y;1® f95) + ¢ J_(X;,Y) Res(0;dfy)
j=1 -
where (a;) means (a;,as,... ,an) and c belongs to the center of oN.
We also put
N
(1.2:9) 8(%) =9 ®c H'(C,00(* y_ @))).

=1

By Lemma 1.2.5 we have a natural embedding

N N
t: H(C,0c(+ Y @5)) = @ C((&))-

j:] j=1

N
We regard H*(C,O¢(* Z;V:I @;)) as a subspace of @C(({,-)). By Lemma

Jj=1
1.2.4 we have the following lemma.

Lemma 1.2.8. §(X) is a Lie subalgebra of gn .

Let us fix a non-negative integer £. For each X= (A1,---,AN) € (P)Y,
a left gy-module H; and a right gy-module ’H} are defined by

Hz =Hx ®c - ®c Hon
ML =H) 8- BcH, .

For each element X; € g, f(£;) € C((£;)), the action p; of X;(f;] on Hj is
given by

(1.2-10)

pi(XilfiDl1 ® -+ @ vn) = [01 ® -+~ @ vj—1 B (X;[fi])vi ® vj41 ® -~ vN)

where
|11 ® - Qun)
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means

[v1) ®--- ®low), |v) € Ha;e
The left gn-action is given by

N
(1211) (X1 ® fi,-.. . XN @ fn)lor @---on) = 3 ps(X; (Do & - o).
j=1

Similarly, the right §n-action on H} is defined by

N
(1.2-12) (1@ unl(X1® f1,... , XN® fn) = E(u1®" ~un|pi(X;(f5])-

Jj=1
As a Lie subalgebra, g(%) operates on H 5 and 'H} as
(1.2-13)
N
(X @1 ®---@vn) =D pi(X ®t;(f))lor ®--- )
Jj=1
(1.2-14)

N
(@@ @unl(X®f) =Y (w1 ®:-- @unlpi(X ®1;(f)).

Jj=1
The pairing ( | ) introduced in (1.1-22) induces a perfect bilinear pairing
(1.2-15) (| ):HixH;—>C
(u1®..-@un|,[v1@...®un)) = (u1]v1){uz|vz) - -~ (un|vn)
which is gy-invariant.
(T(X; ® fi)I®) = (¥|(X; ® f7)®)-

Now we are ready to define the conformal block attached to X.
Definition 1.2.9. Assume that X enjoys the property (Q) in §1.1. Put
(1.216) V3(Z) = Hz/B(0Hs.

The vector space V5(X) is called the space of covacua attached to X. The
conformal block (or space of vacua) attached to X is defined as
(1.2-17) V1(%) = Home(V5(%),C)-

In case X does not satisfy the property (Q), we use Theorem 1.2.14 below
to define the conformal block.
From the definition (1.2-17) the following lemma follows easily.
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Lemma 1.2.10.

(1.2-18) viE) = {(¥| e HL |(¥|5(x)=0}.

Corollary 1.2.11. Let X, = (C1;Q1,--- ,@Mm;81,-.- ,5m) and Xy = (Ch,
@M+1,--- ,@N;SM+1,--- ,SN) be M-pointed and (N — M)-pointed stable
curves with formal neighbourhoods, respectively. Let

x=(C1UC2;Q1,... ,QN;Sl,... ,SN)

be the N-pointed stable curve with formal neighbourhoods obtained from
X, and ¥;. Then, we have a canonical isomorphism

Vi L ® =V (®) eV (%)

Let us study the conformal blocks when the underlying curve is the Rie-
mann sphere P!. We regard P! as CU{co} and let z be a global coordinate
of C. For a positive integer N > 1 let us choose N-points 21, z2,... 2y of

P! and put
é_{z—zj if z; # o0
T 1/2 ifzj=oo.

Then X = (P';21,... ,2n;&1,-.. ,€N) is an N-pointed curve with formal
coordinates. Choose A = (Ay,... An) € (Pp)" and put

Vi=Va ®c - Q®c Vay-
We have the following result.
Proposition 1.2.12, The natural restriction mapping
Homg(Hj3,C) = Homg(V3, C).
induces an injective homomorphism
i : V}(%) — Homy(V5,C).

The proposition implies that the space of vacua attached to the Riemann
sphere P! is finite dimensional. Gabber’s theorem [Ga] implies this is true
in general. (For details see [TUY] or [U].)

Theorem 1.2.13. Vy(X) and V}(.’x") are finite-dimensional vector space.

In §1.3 we shall show that dimg V}(.’i) depends only on the genus g(C)
of the curve C and X.
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Next we shall discuss important properties of conformal blocks. For
X=(C;Q1,---,Qn;m,--- ,1n) let P be a non-singular point of the curve
C and t a formal parameter of C at P. Put

E=(C;Qu, - QN,QN+1;M,- - ,IN, IN+1)

where QN1 = P and gy41 = 1.
In the following we fix a highest weight vector |0) of the integrable left
g-module H;. Since there is a canonical inclusion

'H;‘ — 'H;‘ ® Ho
v} — |v) ®0)
we have a canonical surjection
o 'H}@'Hg — 'H} .

Theorem 1.2.14. The canonical surjection t* induces a canonical isomor-
phism
oy~ pt
Vx,o(.”f) o~ Vx(.”i).

Corollary 1.2.15. There is a canonical isomorphism
Vi(E) > V5 (%)

Next let us consider a singular curve. For an N-pointed stable curve
X=(C;@1,-.-,@n;m,--. ,7n) with formal neighbourhoods, assume that
the curve C has a double point P. Let v : C — C be the normalization
at the point P. Put »~!(P) = {P', P"}. Furthermore we introduce formal
neighbourhoods 7' and n" at P' and P", respectively.

Proposition 1.2.16. Under the above notation, for an N-pointed stable
curve X = (C;Qh,-.. ,@QN; M, .. ,qn) with formal neighbourhoods, put

§= (6;P17P“7017"' 7QN;17[717“71717"' 717N)-

Then there is a canonical isomorphism

PV (B3 vi®).

wut,X
weP

¢) Correlation functions

Let X=(C;@1,..- ,@N;M,... ,qn) be an N-pointed stable curve with
formal neighbourhoods. Put

wi =Y (Ulpi(X(n))|u)¢;""dE;, j=1,2,...,N+M
n€Z
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where ¢; = n;'(£). For an element f € HO(xL )M Q) let f;(¢;) =
Za(J)é" be the formal Laurent expansion of f at the point @}; by the

formal parameter {; = 17]-—1(5). Hence #(f) = (fi(&),--- , fnem(En+m))-
Then we have

N+M N+M
B»es filtwi) = D D (Tloi(X(n))lu)ad
J=1 j=1 n€Z

= (VX @t f)lu)=0
since (¥|X ®t(f) = 0 by our assumption. Therefore, by Lemma 1.2.6 there
exists an element w € H(C,wc(x 2N+M @;)) with
t(w) = (w1,... ,wN+M)-
The meromorphic form w is written as
(U1 X (2)|u)dz

and called the correlation function or one point function of the current X(z).
More generally we can show the following result.

Theorem 1.2.17. Fix (¥| € V;(.”f) For each non-negative integer M the
data
X],XQ,...,XMGQ, |¢)€H:\'

define an element

= (‘I’lX](Z] )X2(22) e XM(ZM)|¢)d21d22 .. .dzM

of
M N
HD(CM,wCM( E *A,‘j{-zz*ﬂ' )
1<i<j<M i=1 j=1

where Aij = {(Py,-.. ,Pn)|P; = P;} is the (i,5) diagonal. The meromor-
phic form has the following properties.

0) For M =0, F =<U|® > is the canonical pairing induced by the
pairing (1.1-22).

1)  F is linear with respect to |®) and multi-linear with respect to X;’s.

2)  For any permutation 0 € &, we have

F= (\I’lxa(l)(za(l))Xa(2)(za(2)) o XU(M)(ZU(M))|¢)dZIdZ2 co.dzpr.
For example, for a transposition (i,i + 1) we have

= (U] X1(21) - Xio1(2im1) Xig1 (i) Xi(20)
X,'+2(Z,'+2) .. XM(ZM)|¢)d21 de e dzM .
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3) Fork=1,...,N and & = n; ' (£), if € is a holomorphic coordinate,
then we have the equality

Res (€7 (VIX (60X (20)Xa(20) .- Xon (20)|8)d6i )z -+~ dan
= (1X:(21) Xa(z3) - Xaa(z) loe(X (n))@)dz -~ denr.

In other words, we have an expansion

(U X (€x)X1(21)X2(22) - .. Xpr(20m0)|®)dErd2r - - - dzpy

= E(‘I’|X1(Zl 1X2(22) - X m(zm)lon(X (n))@)E "V dbrdzy - - - dzy
n€Z

4)  For a local holomorphic coordinate z at a nonsingular point P of
the curve C, we have the following equality.

(X (2)Y ()X (2)Xa(z2) - X (za)|)
_ {‘—ﬁ"—’”)(wm(zl)xzw)---XM<zM)|<I>>

(z —w)?
+ Z__LJ(‘I’”X» Y)(w)X1(21)X2(22) - - Xm(2pr)|®)

+regularat z = w }dz; - --dzp .

5)  For a local holomorphic coordinate z at @; and for |v) € V; =
Vi ® - ® Vay C My, we have an equality

(P|X (w)X1(21)X2(22) - - Xm(2m)Iv)
1

= {Z_m(xmxl(z1 1Xa(z2) - Xpr(za0)|pi( X )v)

+ regular at z = Q;}dz - -dzp .

The result 4) is often expressed as

£ (X’ Y) + [Xv Y](w)

(z —w)? z2—w

X(2)Y (w) ~

and called operator product expansion.
For energy momentum tensor we have similar correlation functions.

Theorem 1.2.18.
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1) Put
(TIT(2)X1(21)X2(22) . .. X (2pm)|®)d22dzadzs - - - dzpy

1 dim g
- i { 3 e

a=1
X](Z] )X2(Z2) e XM(ZM)|¢)dZdwd21d22 oo dZM
edi
—(2—_1%)9—2-(\11|X1(21)X2(z2) . Xt (200)|®)dzdwdzy dzs - -dzM} .

Then, this is well-defined and for k = 1,... , N, we have

E;R,c__:%(é;c'“ (UIT (k) X1(21) X2 (22) - - - Xp(2m)|®)dEr)d21dzs - - - dzpyg
= (¥|X1(21)X2(22) ... Xp(zm)|pr(Ln)®)dz1dzy - - - dzpg

where {J',... ,J4™8} is an orthonormal basis of the Lie algebra g. Thus
we have an expansion

(O|T(6)X1(21) X2 (22) - .- Xpa(2pr)|®)dED)dz1d2s - - - dzpg
= (U|X1(21)X2(22) - - Xna (zm0)|or( L) B)Ex "R dzrdzs - - - depy.
n€EZ

2)  For a holomorphic coordinate transformation w = w(z) we have

(O|T(w)X1(21)Xa(22) - - - Xpa(za0)|®)dwPdzrdzs - - - dzpg
= (\I/lT(Z)Xl(Zl )X2(22) e XM(ZM)|¢)dZ2d21d22 e dzpyg

_ 1_; w(z); 2P| X1(21)X2(22) . . - X m(2m)|®)d22d2ydzy - - - dop

where {w(z); z} is the Schwarzian derivative.

d) P! and elliptic curves

In this subsection we shall discuss correlation functions of current and
the energy momentum tensor in case of P! and elliptic curves.

As above we regard P! as C U {cc} and let z be a global coordinate of
C. For a positive integer N > 1 let us choose N-points z;, 22, ...zy5 of P?

and put
z—2z; if z; # 00
€=

1/z if z; = 0.
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Let us consider N-pointed P! X = (P';z1,...,2n;61,... ,&n). formal
coordinates. Since there are no holomorphic one-forms on P!, for X € g
and |v) € Vi by Theorem 1.2.17, 5), we have

2

(1.2-19) (UX (2)lv)dz =)

Jj=1

‘I’IPJ (X)v)d=

Z —

Note that if one of zj, say 2 is the point at infinity co, then in (1.2-19) the
term

_lzj (|1 (X)o)dz

disappears. This is because the residue at the point at infinity oo of the
form

Z—Zj

Yo
E (T|pj(X)v)dz

is
N

= (Tlps(X)v) = (Tlpr(X)v)

j=2

by the gauge condition.
For the correlation function of energy momentum tensor, first consider
(¥|X(2)X (w)|v)dzdw for X € g. By Theorem 1.2.18 we have

(1.2-20)
()X (2)X (w)|v)dzdw
(X, X)

(- w)?

(T]o) dzdw+z = (U)o (X)0)dschw

since there are non holomorphic two-forms on P! x P!. By (1.2-19) the
equality (1.2-20) is rewritten in the form

(1.2-21)

(WX ()X (w)|p)dzdw = 5K

(z —w)?
+ Z E m(‘l’bi(x)pk()()v)dzdw.

j=1 k—l

(¥|v)dzdw

Here, again, if z; = oo, then the terms containing z; should be omitted.
By (1.2-21) and Theorem 1.2.18, for a correlation function of the energy
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momentum tensor we have the following expression.

(1.2-22)
(T|T(2)|v)(dz)?

dim g

BEE +K)E (2 —zj )(z—zk) E (Tlpi(T*)pr(I*)|v)(dz)?

for (U] € V}(%) and |v) € V;. Put

dim g

(1.2-23) Q= Y pi(T)pr(T*)

a=1

and
(| = j((¥]) € Homg(V3,C).

Then we have the following expression which will be used below.

(1.2-24)  (¥|T(2)|v)(dz)? = 2( oy EZ E _‘bz'f)”;'i Zk)(dz)2.

j=1k=1

If z; = oo this formula should read

(1.2-25)  (P|T(2)|v)(dz)? = 2(*+ Z)EE (Z_ﬂ‘)”jiZ’c)(dZ)?.

=2 k=2

Next let us consider correlation functions for one pointed elliptic curves.
Let E be an elliptic curve with period matrix (1,7) with 7 € H, where H
is the upper half plane:

E=C/(1,r).

Let us consider a one-pointed curve X = ( E; [0]; z ) of genus 1 with formal
coordinate where [0] is the origin of the elliptic curve E and 2 is a global
coordinate of C. The conformal block VI(S;") is given by the conditions
(PIXQ@p™(z)=0 n=0,1,...
(VI X®1=0
where g(z) is the Weierstrass p function. For an element (¥| € VI(%), an

element X € g and an element |v) € V), the one form (¥|X(z)|v)dz has the
expansion

(¥1X(2)lv)d=
E (| X(n)v)2z""1dz

n€Z
E ()X (—n)w)""1dz.
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Since there is no meromorphic one form on the elliptic curve F which has a
pole of order one at the origin and holomorphic outside the origin, the form
(¥|X(2)|v)dz is holomorphic. Therefore, we have

(1.2-26) (T|X(2)|v)dz = (¥|X(-1)|v)dz
and if n # 1 we have

(1.2-27) (T|X(—n)lv) =0.

By using Theorem 1.2.17 we have

(P|X(2)X (w)|v)dzdw = (¥|X(-1)Y (-1)v)dzdw

for (¥| € Vl(.‘i’), X, € g and an element |v) € V). Hence, by Theorem 1.2.18
we also have the following result. For |v) € V) we have

dim g

2 __ ; ar_ o _Dlw Z2
(UT(2)l)de" = 5y a2=jl<w< 1)JT*(=1)lv)dz".

Again by Theorem 1.2.18, 1) we also have

(T|T(2)|v)dz? = 2:(\I/|L,,v)z—"—2dz2
ne€zZ
= (VZov)p(2)ds* + (VI _a0)ds? + -
= A,\(\I/|v)p(z)dz2 + (¥|L_zv)d2® + - --
(1.2-28) = (¥|L_yv)dz?

In particular
(\I/lL—l ’IJ) =0.

§1.3 Sheaf of conformal blocks

In this section we shall define the sheaf of conformal blocks attached to
a family of N-pointed stable curves with formal coordinates and show that
it is coherent and locally free.

a) Sheaf of conformal blocks
Definition 1.3.1. Data (7 : ¥ — B;si1,82,...,5N;71,72,.-. ,7N) are

called a (holomorphic) family of N-pointed stable curves of genus g with
formal neighbourhoods, if the following conditions are satisfied.
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(1) Y and B are connected complex manifolds, 7 : Y — B is a proper
flat holomorphic map and s;, s3,... , sy are holomorphic sections of .

(2) Foreach point b € B thedata (Y3 := #71(b); s1(b), s2(d), ... , sn(b))
is an N-pointed stable curve of genus g.

(3) 7 is an Op-algebra isomorphism

nj: 0y = lim Oy/I} ~ Op|[€],

where I is the defining ideal of s;(B) in Y.

Definition 1.3.2. A family ¥ = (7 :C — B; s1,52,...,sn) of N-pointed
stable curves of genus g is called to be versal (resp. universal) at a point b €
B, if for any deformation 9 = (7 : X = Y;s1,... ,sn) of #71(b) = (C; @4,

. ,@nN) with prescribed point y € Y there exists a holomorphic mapping
(resp. unique holomorphic mapping) f from a neighbourhood of y in Y to
B™) such that the pullback f*X is isomorphic to g) in a neighbourhood of
y in Y and that df is uniquely determined at the base point. If the family
is versal (resp. universal) at each point of B, the family X is called a versal
(resp. universal) family.

Let § = (7 : C — B;s1,...,8N;M1,--- ,7n) be a family of N-pointed
stable curves of genus g with formal coordinates. We assume that B is a
finite dimensional complex manifold and that each fibre of the family §
satisfies the condition (Q) in §1.2, but we do not assume that the family is
connected. The main purpose of the present section is to define the sheaf
of conformal blocks V;(S) attached to the family § and show that it is a
coherent Jg-module.

Definition 1.3.3. The sheaf gn(B) of affine Lie algebra over B is a sheaf
of Og-module

N
8n(B) = 880 (D 05((,)) ® s -

with the following commutation relation, which is Og-bilinear.

(X1®fi,---  XN®fn), (Y1 ®61,--- , YN Q gn)]

=([X1, Y] ® (fig1),--- [ XN, YN] @ (fNgN))
N

G- E(Xj,Y})gg%(g,-df,-)

=1

¢ € Center

where

X, Yien fi9i €0s((5))-
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Put
(1.3-1) 8(8) = 8 ®c ™ (Oc(+S5))
where we define
N
S= 2_: s;(B)
To(Oc(xS5)) = 111_;i7r..(0c(k5)).

There is a sheaf version of homomorphism defined in (1.2-5), by using
the formal neighbourhoods 7;.

N
i:7.(08(+5)) ~ D Os((¢:))

and we may regard g(§) as a Lie suba.lgebra of gN(B)
Fix a non-negative integer £. For any X= (A1,-- -, AN) € (PN, put

(1.3-2) H;(B) = O ®c H;,
(1.3-3) ML (B) = Homo, (H5(B),0s) = O ®c HL.

The pairing (1.1-22) induces an Og-bilinear pairing

(1.3-4) ( | ):HL(B) x H;(B) — Os.

The sheaf of affine Lie algebra gn(B) acts on H;(B) and ’H}(B) by
(1.3-5)

(X1©) aQa™,- .., (Xn® ) alVen™)(F © 1))

nezZ nEZ

N
=Y Y (@ F) @ p;(X;(n))|T)

j=1n€Z
The action of gy (B) on ’H}(B) is the dual action of H;(B), that is,

(1.3-6) (Ta|®) = (¥]|a®) for any a € G.
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Definition 1.3.4. Put
V5(¥) = H5(B)/a(5)H5(B)
V() = Homo, (V5(B), Os)-
These are sheaves of Og-modules on B. The sheaf V;(S) is called the

sheaf of conformal blocks attached to the family § and V;(%§) is called the
sheaf of covacua. Note that we have

Vi®) = {(¥| e HL(B)| (¥la=0 forany a €§(F)}.
The pairing (1.3-4) induces an O g-bilinear pairing
(1.3-7) (1 ):VI®) xV5(3) - Os.
Lemma 1.3.5. For a point s € B put
Fs = (x71(s); 51(8),--- ,sn(8); Mlr=1(s)s--- >IN |n=1(s))
Cg = (’)B,,/m,

where m, is the maximal ideal of the stalk Og 5. Then, we have the following
canonical isomorphisms.

C; ®os H:\'(B) ~Hx

C; ®0o, n(B) ~ 8N
8(%) ®0os Cs ~4(3s)

V5(8) ®0s Cs =~ Vx(3s)

C; ®0, HL(B) ~ HL.

More generally, for a holomorphic mapping f : Y — B we let §y be the
pull-back of the family § by the morphism f. Then, we have the following
canonical isomorphisms.

Oy B0, Hs(B) = H5(Y)
9n(B) ®0,s Oy ~gn(Y)
8(%) ®os Oy ~8(Fv)
Oy ®os V3(¥) ~ V5(8y)
Oy B0, HY(B) =~ HL(Y).
Moreover, the actions of gn(B) and gn(Y') on H;z(B), ’H}(B), H;(Y) and

'HI-‘(Y) defined in (1.3-5) and (1.3-6) and the action of gy on Hj are com-
patible with respect to the above canonical isomorphisms.

Note that a priori it is not clear that the natural mapping
Vi(8) ®0s Co = V(30)
is isomorphic. This is the case if the sheaf V;(§) is locally free. We shall

show later this fact.
For our family, Theorem 1.2.11 takes the following form.
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Theorem 1.3.6. The sheaves V;(§) and V;(%) are coherent Og-modules.

b) Local freeness of sheaf of conformal blocks

In this subsection we shall prove local freeness of the sheaf of conformal
blocks V(§) over the locus B \ D of smooth curves.( For the notation see
below ) For that purpose first we introduce a certain Og-submodule £(§) of

@03 ;i )) —— and an action of £(§) on the sheaves of conformal blocks

a.nd covacua as ﬁrst order twisted differential operators. In the next section
this action will be used to define a projectively flat connection on the sheaf
of conformal blocks.

Let §© = (7 : C — B;si,...,sn) be a versal family of N-pointed
stable curves of genus g. We let ¥ be the locus of double points of the
fibres of §® and D be n(Z). Note that ¥ is a no-singular submanifold of
codimension two in C and D is a divisor in B whose irreducible components
D;,1=1,2,... ,k are non-singular. Assume that formal coordinates

15 :Oc/oymy ~O8[[ €], §i=12,...,N

are given. For simplicity, in the following we assume that 17]-_1(5 ) is holo-
morphic in a neighbourhood of s;(B). The general case can be treated by
approximating formal coordinates by holomorphic ones. We use the follow-
ing notation freely.

N
Si=si(B), S=YS;, &=n7'.
Jj=1

Now §= (7 :C — B;s1,-.. ,8N;M,--- ,Mn) is a family of N-pointed stable
curves of genus ¢ with formal neighbourhoods. For each A € (P;)®" we can
define the sheaf of conformal blocks V;(S) and the sheaf of covacua V;(§).
These are a subsheaf of ’H}(%) and a quotient sheaf of H;(2B), respectively.
First recall that we have the following exact sequence of @g-modules.

(1.3-8) 0 — mi(Oc/p(xS)) > @03[5 1 ]—- 2 R'7.0¢/8(—5) = 0
=

More precisely, for any positive integer m > 4g — 3 we have the following

exact sequence.

d

N m
(1.3-9) 0 — m(9c/8(mS)) 3 PP 0s 6 = 1% R 7,Oc;8(—S) — 0

Jj=1 k=0 §
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Note that the mappings b and by, correspond to the Laurent expansions
with respect to {; up to the zero-th order. To define the first order twisted
differential operators acting on the sheaves of conformal blocks and covacua,
we need to modify the exact sequence (1.3-8) in the following way.

There is an exact sequence

0—>@c/3—>@cd—1>r7l'*03—>0
where O¢/p is a sheaf of vector fields tangent to the fibres of 7. Put
O'c,,, = d7r'1(7r—193(—logD)).

Hence, O , is a sheaf of vector field on C tangent along ¥ whose vertical
components are constant along the fibres of 7. That is, in a neighbourhood
of a smooth point of a fibre O , consists of germs of holomorphic vector
fields of the form

a(z, u)—q- + f: b,-(u)u,-—a— + Zn: b,-(u)—a—
Bz — Bu,- . au,-
=1 t=m+1
where (z,u,,... ,un) is a system of local coordinates such that the mapping
7 is expressed as the projection
n(z,u1,... ,un) = (U1,... ,Un)
and n(X) = D is given by the equation
Uy -Up - Um = 0.
More generally, we can define a sheaf O;(mS), as the one consisting of
germs of meromorphic vector fields of the form
m

A(z, u)gz- + Z B;(u)u,-éi—i + Z B,.(u)éi_i

=1 i=m+1

where A(z,u) has the poles of order at most m along 5. Now we have an
exact sequence

(1.3-10) 0 — O¢/5(mS) — Op(mS)x 23 7 10(—log D) — 0.
Note that ©z(mS)x has a structure of a sheaf of Lie algebras by the usual

bracket operation of vector fields and the above exact sequence is the one
as sheaves of Lie algebras.
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1
For m > -ﬁ(2g — 2), by (1.3-10) we have an exact sequence of Og-

modules.
(1.3-11) 0 = 1.O¢/8(mS) — 1O (mS)x &5 Op(—log D) — 0

which is also an exact sequence of sheave of Lie algebras. Taking m — oo
we obtain the exact sequence

(1.3-12) 0 = 1.0¢;8(*S) = T.OL(xS)x 3 O5(—log D) — 0.
The exact sequences (1.3-8) and (1.3-12)are related by the following com-
mutative diagram.

0— mOcp(*xS) —  mOL(*S)x % og(=logD) —0

Il Ip lp

d

L 3 om _
d{j — RW,@C/B( S) -0

0— m0Oc¢/B(*xS) — @;il Osl ¢

where p is the Kodaira-Spencer mapping of the family §® and p is given
d
by taking the non-positive part of the & part of the Laurent expansions of
J
the vector fields in 7, O¢(mS)x at s;(B) . Since our family §© is versal, the
Kodaira-Spencer mapping p is an isomorphism of Og-modules. Therefore,
P is isomorphic. Let

N d
7m0 (xS)x — D Os(( ¢; N3
j=1

d
be the natural lift of the homomorphism p given by taking the &, part of
j

the Laurent expansions at s;(1). Since p is isomorphic, p is injective. Put
L(8) = p(meO(xS)x)-

Then, we have the following exact sequence.

(1.3-13) 0 — 1O p(*S) = L(F) 2 O5(—log D) = 0

of Og-modules. The Lie bracket [ , ]4 of L(F) is obtained by that of
7.0¢(*S)x) by the mapping p. Thus, for £, 7 € L(F) we have

(1.3-14) [, g = 1€, o + 8(8)(%) — 8(3)(9)
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where [ , o is the usual bracket of formal vector fields and the action of
0((7) on
i = (i o)
= — ., MNT—
tag N dey

is defined b
Y d d
G(Q(ml)a,- . ,o(a(mN)E)

Then, the exact sequence (1.3-13) is also that of sheaves of Lie algebras.
Let us define an action of £(§) on Hz(B).

Definition 1.3.7. For £ = (I,,...,ly) € £(§), the action D(£) on Hz(B)
1s defined by

(1.3-15) D(8)(F ® |2)) = 6(F)(F) ® |®) — Ep, T(L,])|@)

where

FeOg, |®)c¢€ H;.

The following proposition is an easy consequence of the definition and
(1.1-10).

Proposition 1.3.8. The action D() of £ € L(§) on Hx(B) defined above
has the following properties.
1) For any f € O we have
D(f2) = £D(0)

2) For I,me L(§) we have

é) [Z m]d) + Z Res <d§3 m]d§J> :
3) For f € Op and |¢) € Hyz(B) we have

D(8)(f1#)) = (B()(F))|$) + FD(£)|4).

Namely, D([) is a first order differential operator, if 0(3-) # 0.
We define the dual action of £(§) on 'H}(B) by

N
(1316)  DE)(F ® (¥]) = (B)F) ® (¥|+ Y F- (¥lp;(TIL;).

i=1
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where

FeOs, (¥ eH(B)
Then, for any |8) € H3(B) and (U] e ’H}‘(B), we have

(1.3-17) {D(@)(T}I®) + (F{D(D)|®)} = 6(2)(¥|).

This agrees with the usual definition of the dual connection. See also Propo-
sition 1.3.14 and (1.3-21) below.
Now we shall show that the operator D(£) acts on Vi(3)-

Proposition 1.3.9. For any le L(§) we have

D()(§(3)H5(B)) C B(8)Hx(B).
Hence, D(é) operates on V3(§). Moreover, it is a first order differential
operator, if 0([) #0.

Proof. An element of §(F)Hz(B) is a linear combination of elements of
the form

N
F® (Z pi(X ®ti(h))®))
where

FeOp, Xeg, hemOc(xS), |®)e€H;

and t;(h) is the Laurent expansion of h at S; = s;(B) with respect to the
parameter {;. First we shall show the following equality as operators on

H;(B).
(1.3-18)

N N
(D, Y p(X © ()] =Y ps (X @ {8(8)(2(m) + (1)}
where 0([7) operates on the coefficients of ¢;(k). By Proposition 1.3.8, 3) it

is enough to show the equality (1.3-18) as operators on H;. For |®) € Hj,
by (1. 1-16) we have

Z) ZPJ Xot;i(R))|®) )_EPJ X @ tj(h))(D Z)FI’

Jj=1 Jj=1

= E{p, (X @ 6(8)(t;(h)) — T[4;1pi(X @ t;(h))}|®)
+ me ®t;(R))T[L,)|®)

= Z{m X @ 6()(13(R)) + pi( X ® £y(t;(R)}2)-

j=1
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But 6(£)(t;(R)) + £;(t;(h)) is nothing but a Laurent expansion at s;(B) of

a meromorphic function 7(h) where 7 = p—l(éj € 7u(O¢(*S)x. Hence, we
have the desired result. QED.

Similarly we can show that D([) acts on V;(%)
Corollary 1.3.10. The Og-module V5(3§) is locally free on B\ D.

Proof. By Lemma 1.3.5, for any point z € B\ D we have an isomorphism
C: ®os V3(8) ~ Vi(32)
where we put
§: = (C: =n"Yz),1(2),... ,sn(z);mle.,--- »anle.)-

Let v1,...,vm be local holomorphic sections of V;(§) in a neighbourhood
of z such that {v;(z),... ,vm(z)} is a basis of V;(§:). Suppose that there
is a non-trivial relation

(1.3-19) av +azvs+ -+ amvm =0

where a;’s are holomorphic function in a neighbourhood of z. By our as-
sumption
a1(2) = az(2) = -~ = am(2) = 0.

Changing the order of suffices if necessary , we may assume that there is a
positive integer k such that

k k+1
alemx\mx+ )

a,-em'x, 1>k 1=2)3,...,m.

We choose a;’s in such a way that the positive number & is the smallest
among the relations (1.3-19). Let 7 be a nowhere vanishing local holomor-
phic vector field in a neighbourhood of = such that 7(a;) € mé~1. There

exists £ € L(§) with 8(f) = 7. Applying 7 = 6(£) to the equality (1.3-19)
we obtain the equality

(1.3-20) Z(‘r(ai) + E aji)vi =0

where

D(&)(vi) =Y asjvj.

=1
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Then, the relation (1.3-20) is non trivial and

m
T(a1) + E aj € mbL

=1
This contradicts our assumption. Therefore, v1,... ,v, are Og-linearly
independent. Hence, V5(§) is a locally free Og-module at z. QED.

For a coherent Og-module G, the locus M consisting of points at which
G is not locally free is a closed analytic subset of B of codimension at least
2. Therefore, we have the following corollary.

Corollary 1.3.11. Let W be the maximal subset of B over which V;(§) is
not locally free. Then, W is an analytic subset of B and
WS D.
Since we defined
Vi(8) = Homo, (V5(8), 0s)

we have the following corollary.

Corollary 1.3.12. V;(%)lg\p is a locally free O g-module and for any sub-
variety Y of B\ D we have an Oy-module isomorphism

Oy @0, VI(B) = Vi(3ly)

These two corollaries play crucial role to prove local freeness in general.
The above corollaries imply the following theorem.

Theorem 1.3.13. If§ is a family of N-pointed smooth curves with formal
neighbourhoods such that the induced family §® of N-pointed smooth
curves is not necessarily versal, then V;(§) and V;(S) are locally free Og-
modules and they are dual to each other.

Another important consequence of the above discussions is the following.

Proposition 1.3.14. For each element £ € £(3), D(£) acts on V(3).
Moreover, if 6(€) # 0, then D(£) acts on V;(%) as a first order differen-

tial operator.

Note that for the natural bilinear pairing ( | ): V;(S) x Vi(¥) — Os,
we have the equality

(1.3-21) {D(E)(2|}|2) + (T|{D(£)|®)} = 6(£)((T|®)).
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§1.4 Projectively fiat connection and fiat sections

In this section, based on the arguments in §1.3, b) we shall define the
projectively flat connection on the sheaf of conformal blocks. The connec-
tion is defined over the locus of smooth curves B \ D and it has regular
singularities along the boundary D, the locus of the singular curves.

a) Projectively fiat connection

Let § = (7 :C — Bjsi,... ,SN;M,.-. ,nN ) be a family of N-pointed
curves with formal neighbourhoods such that §® := (7 : C = B;s,...,
sn ) is a versal family of N-pointed curves. We shall use freely the notations

in the previous sections.

As was shown in Proposition 1.3.9 and Proposition 1.3.14 the sheaf £(§)
acts on V5(§) and V() from the left. Moreover, for £ € L(§), if 6(Z) # 0,
the action defines a first order differential operator. In this section first we
shall study the action of £ more closely when 8(£) = 0. Note that by (1.3-14)
we have an exact sequence

(1.4-1) 0 — T (Oc/8(*S)) = L(F) > 05(~log D) — 0.

In the following for simplicity we shall discuss mainly a smooth family of
N-pointed curves with formal neighbourhoods though we shall use general
notation.

Lemma 1.4.1. Assume that B is small enough so that we can find a sym-
metric bidifferential

w € H%(C xp C,wexscy8(24))

satisfying Res®(w) = 1, that is

w= ((—1—— + holomorphic ) dzdw

z— w)?
at the diagonal A. Then there exists a unique O g-module homomorphism
a W,@c/g(*S) — OB

independent of the choice of w such that for any £ € L(§) which is the image
of an element of m.O¢/p(*S) by the exact sequence (1.4-1), we have
D(f) = a(f) - id

as a linear operator acting on Vx(§) from the left and

- -

D(&) = —a(f) -id
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as a operator acting on V;(%) from the left .

Proof.  Since 6(£) = 0, by (1.3-15) for any (¥| € V(§) and |®) € V(3)

we have

N

(THD(D)|®)} = - Y (¥|p;(T(L;])|2)

j"'l

=— E Res (602 T(€;)12)dE;)

where £; = £; (§,) and by Theorem 1.2.18 we have

d¢

(BIT(&5)1®)(dé;)?

dim g

1 1 arr NTe(£. . .
= C,-h—»nz,- {W az=:1 (T|T(¢5) T (€5)]12)dC dE

C

where
_£-dimg

Cy = PR

Choose a symmetric bidifferential
w € HD(C xBC,ch,c/B(2A))
with Res?(w) = 1. The existence of such a bidifferential is well-known for
smooth curves. Put
(1.4-2)
(T|T(2)|@)(dz)?

] 1 dim g . .
;= lim {W ; (T]J%(w)J(2)|®)dwdz

C‘U
-, 2)(¥|@)dwdz } .
Also define S, (z)(dz)? by

Su(2)(dz)? = 63)imz {w(w, z)dwdz — dwdz }

(w—2)
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The form S,,(2)(dz)? is called a projective connection. It depends not only
on the choice of w but also on the choice of local coordinates:

Su(w)(dw)? = S,(2)(d2)? + {w; z}(dz)*.
Now we have

(TIT(&)I@)(dE;)" = (IT(E;)|@)(de;)* + 5 (U1®)Su(¢5)(dE;)".

Thus we have

(1.4-3)
(T|{D(£)|®)} ERA%S {(&)(2IT(&))| ) Bde;)

N

75 (YI®) E £;(£5)5(€5)dE5)-

Since £;(z)(¥|T(z)|®)dz is a global meromorphic one-form which has poles
only at s;(B), the first term of the right hand side of the above equality is
zero. Therefore, if we put

(1.4-4) au(f) = - ZR»es 1(€5)Sw(€i)dé5)

then we have

(THDD)|®)} = au()(T|B).
Now V;(§) and V;(S) are locally free and dual to each other, we conclude

D(0)|®) = a.(£)|®).

Let us show that aw([) is independent of the choice of w. If w' € H°(C xp
C,wexyc/B(24)) is another symmetric bidifferential with Res®(w) = 1, then
w — w' is a holomorphic bidifferential on C xg C. Hence, S, — S.r is also a
holomorphic section of w?fs on C. Let 7 be an element of 7,O¢/p(*S) with

t(r) = ‘. Then, 7(z)(Sw(z) — Sw(2))dz is a meromorphic one form on C.
Hence, we have

N
ERg Sw(és) — Swr(§5))dE;) = 0.

Thus, we conclude

w(€) = aus ().
This shows the first part of the lemma. By (1.3-21) similarly we can show
the second part. QED.

The above proof shows also the following corollary.
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Corollary 1.4.2. Under the same assumption as in Lemma 1.4.1 for each

7€ L(F), if we define a,(£) by (1.4-4), then
ay: L(§) = OB

is an Og-module homomorphism.

Remark 1.4.3. In the above corollary, since £ is not necessarily an image of
a global meromorphic vector field, a,, (é) does depend on the choice of w.

Now we are ready to define the connections on V;(§) and V}(S), if

B is small enough. Let us fix a symmetric bidifferential w € H°(C xg
C,wexse/8(24)) with Res?(w) = 1. For each element X € ©g(—log D),

there is an element £ € L(§) with 0((7) = X. Define an operator Vg‘(u) acting
on V(§) from the left by

(145) v (112)) = (1)) - au(E)((12))
where by [|®)] we denote the element in V;(§) corresponding to |®) .
Proposition 1.4.4. Vg}") is well defined and enjoys the following property.

(1.4-6) VA1) = X(HI®)] + FYL((19)])

where f € Og. Hence, the correspondence X — Vg‘:) defines a connection
on V;(§) with regular singularities along D.

Proof.  Choose another & € L(F) with 6(f) = X. Then, we have
a(l -2 = a,(8) — a.(P).

By Lemma 1.4.1 we have

N
(D(@) - DE@))1®)) =~ _[19)] = a(f~ T)[1®)]
Thus, as operators on V() we have the equality

D(8) — ay(f) -id = D(?) — a,(?) -id.

Hence, Vg}") does not depend on the choice of 7. By Proposition 1.3.8, 3)
the equality (1.4-6) holds. QED.
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Theorem 1.4.5. The connection V(*) on V;5(8)ls-p is projectively flat.
Remark 1.4.6. For P!, since the form

- dwdz
==y
is a global form, we have
a, =0.

Hence, in this case the connection is flat. For N-pointed P!, by (1.2-24) the
connection is the inhomogeneous form of Knizhnik-Zamolodchikov equation

([K2Z)).

b) Family of one-pointed stable curves of genus 1

In this subsection we shall show how to prove local freeness of the sheaf
of conformal blocks over the locus of singular curves in case of the universal
family of one-pointed stable curves of genus 1. The argument will also show
how to construct multivalued flat sections from the data of a boundary. It is
deeply related to monodromy representation of Teichmiiller modular groups
([TK], [Ko], [W]) and the Verlinde conjecture ([Ve], [MS1]). For details we
refer the reader to [U].

First let us construct a versal family of stable curves of genus one. Let 2
and w be coordinates of P! with center 0 and oo, respectively with

zw=1.

Put

D={geClld<1}, X={ReP'||«(R) <1},

Y = {P € P! ||w(R)| < 1}.
and
S={(zy9€eClzy=g, |o| <1yl <1,lg <1}
Z={(R,q)eP' xD|ReP'\{XUY} or ReX |z(R)>|ql}
W={(P,gq eP'xD|PecP'\{XUY} or PeX |w(P) >]lql}

Let us introduce an equivalence relation on SU Z UW. The equivalence
relation is generated by the following relations.
1) A point (R,q) € X x DN Z and a point (z,y,¢') € S are equivalent if

' q
(z,9,9) = (2(R), Z(—R),Q)-
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2) A point (P,q) € Y x DNW and a point (z,y,¢') € S are equivalent if

"o q
(1:7 Y, q ) = (W’w(}))’ Q)'

3) A point (R, q) € Z and a point (P, ¢') € W are equivalent if
¢ =g z(RwP)=g¢

Put
E=(SUZUW)/ ~.

Then £ is a two-dimensional complex manifold. For points (z,y,q) € S,
(R,q) € Z and (P,q) € W we denote the corresponding points in £ by
[(z,v,9)], [(R,q)] and [(P, ¢)], respectively. We have a natural holomorphic
mapping

m:&— D.

For ¢ € D put

S(g)={(z,y) €C* |2y =¢ 1},
Z(q)={P'—XUY}U{Re X ||z(R)| > lq| },
W(g)={P'-XUY}U{PeY:||w(P)>lgl}

By the reason which will become clear later we use mainly the coordinate

w so that
P'={(w:1)|weC}U{(1:0)}.

Assume that ¢ # 0. We can rewrite

P'—XUuY={(w:1)||w=1}
Z(g={(w: )| 1< |w| <1/}
W(g)={(w:1)[lgl <|w|<1}

On S(g)UZ(g)U W(q) the above equivalence relation induces the following
one.
(w:1) € X xgnZ(q) ={wl 1< |w <1/|ql} and (z,3,9) € S(q) is

equivalent if

(.’B, Y, Q) = (l/w’ qu, Q);
(w:1)eY xgnW(q)={w|lq < |w'| L1} (2,y,9) € S(q) is equivalent
if

(2,9,9) = (¢/w',w', q).
Note that if ¢ # 0, a point (z,y,¢) € S(g) is either equivalent to the point
(w:1) € X xgNZ(g) (when |z| < 1) or to the point (w' : 1) € Y x gn W(q)
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(when |y| £ 1). Therefore, the quotient manifold £(¢q) = (S(q) U Z(q) U
W(q))/ ~ is obtained by identifying 1 < |w| < 1/|¢| and |¢| < |w'| £ 1 by
w' = qw. In other word, £(g) is the quotient manifold E,) = C*/(g) where
{g) is the infinite cyclic group of analytic automorphism generated by

w — qw.

Hence, £(q) is the elliptic curve E(,, if ¢ # 0 and a rational curve with
an ordinary double point for ¢ = 0. Note that £(g) is the fibre 77 !(g) of
7 : € = D and that the point [1] of £(¢) corresponding to w = 1 is the
origin of the elliptic curve. Moreover, if ¢ = 0, the fibre 77*(0) of 7 is a
rational curve with ordinary double point obtained by identifying the points
=(0:1)and 0=(1:0).
It is easy to show that _w is a holomorphic one-form on €(q) for ¢ # 0.

and the family 7 : £ = D is versa.l at each point ¢ € D.
The mapping

o:D—> €&
g~ [(¢:1,9)], where (g,1,¢) €S

defines a holomorphic section o of the family = : £ — D.

Let us consider the family § = (£ — D;o0;u) of one-pointed stable curves
of genus one with coordinate, where v = w — 1. Let us consider the sheaf of
conformal blocks V}(F). First we shall construct formal sections of V()
starting from the data on the fibre £(0) at the origin.

Let _

v: E(0)=P' = £(0)

be the normalization of £(0). Then, we have
v(0) = v(o0) = the double point
v(1) = o(0).
We know that V}((£(0);0(0),)) is canonically isomorphic to

@Vn ao((P1500,0,150,6,€ — 1))
A€EA

For simplicity, put
Vo = Virao((Ph00,1,07,6 = 1,6)).

The vector space VL .o 15 one-dimensional and there is the element
(¥ € V)U »,0 Such that

(Tlvt @ v ®0) = (v|v)
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for any |vt) € Hy+ and |v) € Hy where |0) is the highest weight vector of
Ho and (| ) is the bilinear pairing

Hyt @ Hy — C
defined in §2.2. Let us construct an element

TV e Vi3
from (¥|.

For any non-negative integer d, by Lemma 1.1.11 there exist bases {v¥(d)}
and {vi(d)}, k = 1,2,... ,mq of Hyt(d) and Hy(d), respectively such that
(v7(d)lox(d)) = &.

For each element |¢) € Hy (V4| € H} is defined by

(T4lg) = Z(‘I’h’i(d) ® vi(d) ® ¢).
Now (¥(V| is defined by
(TV]g) =Y " (Valg)g*
d=0

This is a formal power series in q and from our construction it is not clear
that it converges. Later we shall show that ¢2* (¥(Y|¢) is a formal solution
of a differential equation of Fuchsian type so that it converges near the
origin. If we put |¢) = |0), then

oo Mg
(1.47)  ¢*»(¥M)0) = EZ (v)d)|vi(d))g? = Edlmm (d)gr+4,

d=0 i=1
This formal power series is the character of the integrable g-module H)
and can be described by using theta functions ([Ka]). It is a multivalued
holomorphic function on D*.

At the moment we only know that (¥(V| is an element of Hy[[q]]. We
shall show that it satisfies the formal gauge condition so that it can be
regarded as an element of the completion of V}(g) at the origin.

To explain the formal gauge condition first we shall consider meromorphic
functions on our elliptic curve £(¢) having only poles at the origin [1]. Put

(1.4-8) Q7w) E n)2 + _Z: 1 —wq")2
+o00 o™
(1.4-9) ypw)= ) %‘

n=—oo
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Then, if we put z = exp(27v/—1z), we have

o(0w) = — 55— 77 6(2)
Vol

_ !
yg,w) = L ()
where p(2) is the Weierstrass p function. Moreover, we have
(g, qw) = (g, w)
y(g> qw) = y(g, w)
(g, w_l) = z(g, w)
y(q’ w_l) = _y(q’ w)
and they satisfy the following equation:
(1.4-10) y* —42® — 2% + g2(g)z + g3(g) = 0,

where we put

z = z(g,w)
y=y(gw)
ad n3qn
0(0)=20) —=
n=1 g
1 o= (7n® 4 5n%)¢"
93(Q) = § ,,Z=:1 T

Note that z(g,w) has pole of order 2 at [1] and y(g,w) has pole of order 3
at [1]. They are holomorphic except [1]. By the theory of elliptic functions
we know that H%(E(g),O(x[1])) is spanned by monomials of z(g,w) and
monomials of z(g,w) times y(g,w). Note that 2(g,w) has an expansion

z(g, w) = w)2 + Z {E (mw™ + mw™™ — 2)} gt

=1 | mj¢

This formula shows that each coefficient of ¢¢ can be regarded as a mero-
morphic function of P! having only poles at the points co, 1 and 0. The
same is true if we expand polynomials P(z,y) of z(g, w) and y(g,w) in g.
That is, if we have an expansion

(1.4-11)
P(z(q, w), (g, w)) = Q1 (=(g, w)) + Q2(=(g, w))y(q’ w)

=) fr(w)g*,
k=0
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all coefficients fx(w) are in H°(P!,Op1(x(c0 + 1 + 0))).
Now the gauge condition can be calculated formally as follows.

oo

(TV|X ® P(z(g,w), y(g,w))p) = D _(¥al Z X ® fr(w))e*|4)g
d=0 k=0
(1.4-12) z 2 (TI(X ® fe(w))|v'(d) ® vi(d) ® 8))g***

d,k=0 i=1
By the gauge condition on (¥| € Vyt ¢, we have
(TI(X ® fi(w))lv'(d) ® vi(d) ® ¢) =0
This proves formally
(T X®P(a(g, w) y(g,w))

(1.4-13) =3 E (T|(X ® fr(w))lv* (d) ® vi(d) ® ))g***.

d, k=0 i=1

Since we do not know the convergence of (¥(*)|, the above argument does
not prove the fact

(V] € Vi)

To go further we need some facts from algebraic geometry. First we
take the completion V(%) Jo of our sheaf V(%) at the origin. Let m be the
defining ideal sheaf of the point ¢ = 0 in D. Then, the completion is defined
by

Vi@ = lim VI(@)/m"V().
Let Op /o be the completion of the structure sheaf Op of D at the origin.
Since & D/o is faithfully flat over Op, we have

Vi®)0 = Vi(3) ®0, Opyo.

On the other hand, we can show that 173 (8)/0 is characterized as a subsheaf

of Ho Qop Op /o satisfying the formal gauge condition (1.4-13). Hence, we
have

(TN e Vi) 0-

It is also easy to show that (¥»|, A € Py are linearly independent over
Opjo. This means that

(1.4-14) dimg V}(8)/0 ® K > dimV]((£(0), 0(0), ),
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where K is the field of fraction of © D/o- Note that we already proved that
the sheaf V}(§) is locally free over D* and we can show that

(1.4-15) rankV}(§)|ps = dimg V()0 ® K.

Now we need to consider the sheaf Vo(§). In Lemma 1.3.3 we showed the
isomorphism

(1.4-16) Vo(§) ® Co = Vo((£(0), 0(0), v)).

The similar isomorphism is indeed true for V{(§) ® Co, but this can be
proved after we prove that VJ(J) is locally free at the origin. This is one of
the main reasons we need to introduce the sheaf of covacua. jFrom (1.4-14),
(1.4-15) and (1.4-16) we conclude

rankVy(§)|pe = rankV}(¥)|p-
> dim V}((£(0), 0(0),u)) = dim Vo((£(0), 0(0), u))

But, since our sheaf Vy(§) is coherent, we have the opposite inequality:

Therefore in (1.4.17) the equality holds. This means that our sheaf Vy(§)
is a locally free Op-module, hence so is Vg (&) This proves local freeness.

The essential ideas of proving the local freeness for general case are the
same as above.

Next we write down explicitly the connection on the sheaf V().

Let us consider the exact sequence given in (1.4-1)

0 — 1.0z/p(*o(D)) 5 L(F) 2 ©p(—log0) — 0.

The sheaf © p(—1log0) is free Op-module generated by qdiq. We can show

that we have

ety gl
du' = Ydg

Introducing the connection on Vg (&) with regular singularity at the origin

is equivalent to giving the action of @ p(—log0) on V}(g). For that purpose

it is enough to show that the image of the mapping t acts trivially on V(J).
By (1.3-17) for any local section (¥| of V}(F)|p+ and £ € L(F), we have

(1.4-18) {D(O)(T[}¢) = —(Y{D(£)¢)} + 6(£)(¥]4),
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for any local section |¢) € Ho @ Op. By (1.3-15) we also have

D(0)l¢) = 6()l¢) — T(e]|4)-

If £ is in the image of ¢ we have 6(£) = 0. Hence, it is enough to show

(T|T[4|¢) = 0.
That is

(1.4-19) Res{(u)(¥IT(u]lg)du} = 0

where £ = Z(u)di.
u

As was shown in §1.2, ¢) the form
(¥|T(z]|¢)dz*

is a single valued meromorphic form. In our coordinate it can be expressed
in the form

(P|Tw]|g)(dw/w)?

where

w = exp(2rv/—12).

Now in our case, since we have

£=06(r)
for a relative vector field 7 € 7,0¢,p(*0o(D)) having pole only along o(D),
the form £(u)(¥|T[u]|$)du is a global meromorphic one form

L ({2 T[w]| ) (dw/w)?)

which has pole only at o(D), where ¢ is the interior product. Hence (1.4-19)
holds. Thus we can define the connection on V}(F). We can show that
the connection is flat. If the genus of a curve is greater than one, the form
(T|T[2]|$)dz? is no more global form on the curve. Therefore, in general
we can only show that the image of ¢ acts on V}(S) as the multiplication
of a certain holomorphic functions. This is the reason why we only have a
projectively flat connection in general.

Finally we need to show that our formal solutions actually converge so
that we have

(TM] € Vo(3).

Put _
(@(A)| = qAA(\I;(A)L
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We can show that (\’17(’\)| satisfies the differential equation
d
Taq

for any |#) € Vo ® Op, where V; = Hy(0).
It is rather messy to prove this by direct calculation. A general method

to prove this fact can be found in [U, §5.3]. Here we only prove the equation
(1.4.20) when |¢) = |0). In this case, we have

(1.4-20) (FM)g) — (FV|L_,4) =0

oo Mg

FVf0) = (3 (Fo'(d) @ vifd) @ 0))g*+
d=0 i=1

=) (dimHx(d))g* ¥4
d=0

First let us calculate

(TOV|L_,0).
For that purpose it is enough to calculate

(T|v*(d) ® vi(d) ® L-20)
1 dimg oo

=3 7D ; m;m(xmu‘(d) ® vi(d) ® J*(m)J* (=2 — m)0)
For m # —1, since m or —2 — m is non-negative, we have
I m)J* (=2 = m)|0) = J*(=2—m)J*(m)|0) = 0.
For m = —1 the gauge condition implies
(Tlv'(d) ® vi(d)®J*(~1)J*(~1)0)
= (¥ () © v(d) @ I =71 =10

= (U [T g 0 (@) @ vild) ©.0)
1
E—1

1
i) e0)

+ 2(\P|J“[#]v‘(d) ® J*[~——]vi(d) ® 0)

i a 1 a
+ (¥ (d)® J [_ﬁ — 1Vl
We have
a Ui a Ui H i
(@]J [E]J [m]" (d) ® vi(d) ®0)

e 308

(BT [n™] T [n"]v(d) ® vi(d) ® 0)

(J2(m)J*(n)o'(d)lvi(d)) = 0,

1

m,n
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since J%(m)J%(n)v*(d) ¢ Hxt(d). Similarly we have

oo

J(d)©0) = Y (I (m)I*(n)vi(d)

m,n=0

= (v/(d)|T* T*vi(d)).

(Uvi(d) @ I 17"l

Also we have

L lud) @0

Y (JA(m+ 1) (d)| T (n)vi(d))

m,n=0

= (I (@)% (n)vi(d))

n=1

(e el

oo

= 3 (0 (@)T(=n)J* (n)i(d)

Thus we conclude
(B]v*(d) ® vi(d) ® L_20) = (v'(d)|Lovi(d)) = (Ax + d)(v*(d)|vi(d)).

Thus we obtain

(TOVIL_50) = Y (A + d) dim Ha(d)g*> .

d=0

The right hand side of the formula is equal to
2.Gmw

Thus we obtain the desired result. The argument can be generalized for
general |¢) € Ho ® Op.
Remark1.4.6. In the physics literature, (¥»|4) is written as
(1.4-21) tra, (g7 (] * © * ¢)).
Usually physicists add the term ¢~ %:
(1.4-22) trae, (477 H (U] @ % 9)).
This only changes the differential equation (1.4.15) to
d
q

LTI ™ _ S g =
20 TV18) - (FPILz9) — ST Dig) = 0.
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The expressions (1.4-21) and (1.4-22) can be interpreted as follows. If we
fix an element |¢) € Hy, then

(1.4-23) (V)| *@*¢) :u®— (T|lut @u® ¢)

defines an endomorphism of H)(d), where ut is the dual of u with respect
to the inner product defined in Lemma 1.1.11. Hence,

mgq

D (Tlv¥(d) ® vi(d) ® ¢)

=1
can be interpreted as the trace on H,(d) of the mapping
(¥] * ® * ¢) € Hom(Hx 4, Ha(d)).

Moreover, since Ly acts on Hyx(d) by the multiplication of Ay + d, we may
justify the notation

t3, (@(67 (2] * @ % 8)) = ¢4 "(Tv'(d) ® vi(d) ® §).

=1

Hence, in (1.4-21) and (1.4-22) we may regard try, as
oo
Ztrm(d)-
d=0

Remark 1.4.7. A rational mapping

E-P*xD
[(g; (w: )] = ((1: 2(g,w) : y(g, ), )

gives a projective imbedding of £ as a submanifold in P? x D defined by
the equation (1.4-10).

Chapter II  Abelian Conformal Field Theory

In this chapter we shall briefly explain a generalization of abelian con-
formal field theory; this is joint work with A. Tsuchiya.

Abelian conformal field theory is usually discussed from the view point
of the universal Grassmann manifold and Krichever maps ([KNTY]). Here,
we consider it from the view point of non-abelian conformal field theory
discussed in the previous chapter and generalize it. We take the Vertex
operator algebra constructed from Heisenberg algebra as a gauge group. In
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the following we shall show that the main ideas of the non-abelian conformal
field theory can be applied to our situation and the relationship between
conformal blocks and theta functions of higher level will be clarified. The
results in this section are joint work with A. Tsuchiya.

§2.1 Vertex operators

For a positive even integer M we let Hp be an algebra generated by
operators a(n), n € Z with commutation relation

(1.1) [a(n), a(m)] = Mnbpympo - id.

The algebra Hys is called the Heisenberg algebra. It is a universal enveloping
algebra of an affine Lie algebra {a(n)} associated with a one-dimensional
abelian Lie algebra C with commutation relation (1.1). For each p € C, by
F(p) we denote an irreducible highest weight module of Hps determined by

a(0)|p) = plp)
a(n)lp) =0, if n>1,

where |p) is a highest weight vector. Let tg,t1,%2,... be independent vari-
ables. Put

a(m)=—, m=0,12,...
(m) 5.
a(—n) =nMt,, n=1,2]73,...

Then, the Heisenberg algebra Hy and its irreducible module F(p) are re-
alized as
00 o o
EERRY ol niiLl v LLERY e B
F(p) = Clt1,t2,. .. yn,...|ePto,

HM =C[t1,t2,...tn

where the highest weight vector |p) corresponds to eP*. Using this realiza-
tion, we introduce an operator 7 by

= Mto.

Put

#() = T+ a()logz — Y0 Ao

n#¥0
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Then we have

d¢(z) = a(z)dz
For each integer k, the Vertex operator Vi(z) is defined as

(Z) o k¢(z) o

where J J is a normal ordering defined by putting a(n), n > 0 the right
hand side, and § and a(—n),n 2 1 the left hand side. Hence, we have

z)—exp{kza (=n) "} kqeka(O)logzexp{ kf:a(:) —n}

1

The Vertex operator Vi(z) is an intertwiner between the representations
F(p) and F(kM + p). The energy-momentum tensor T'(z) is defined as

T(2) = 55 So(2)a(e)

There is a formal expansion

= E L,z7"72,

neZ

and {L,} is a Virasoro algebra. These operators have the following operator
product expansions.

( M
a(z)a(w)  ~ G=w)y
T(2)a(w) ~ (z—;w)?a(w) + Z_Lwawa(w)
(2.1-1) ! iy
TEWi(w) ~ s Vo) + 2 0uVe(w)
a(z)Vi(w) ~ . _k ka(w)

These formulas show that a(z) behaves as a one-form and Vi(z) behaves as
k2
a 5-M-form. Also we have

(2.1-2) Via (2)Viy (w) = (2 — w)M**2 8V, (2)Vi, (w) § -

In the following we only consider irreducible highest weight representa-
tions of Hp with highest weight vectors |p) where p’s are integers.
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»M — 1} be representatives of the module Z/MZ. For
M 1}, put

HE) = @ Fo.

P=p mod M

Let A =
each 7 € {0,

'—‘I =
'—'I

Let X = (C; @1,... ,@n;&1,... ,€N) be an N-pointed stable curve of genus
g with formal neighbourhoods. To each point @; we associate an element
7; € A and put

PT_ (’7171_’27' . 7PTN)7

H(p) =H([P) @ H(P,) ® - @ H(Py)

Put also
H'(P) = Homo (H(P), C).

We have a natural pairing
M (B) x H(P) - C
(¥ 1¢)) ~— (bl$)
where (1|¢) means ¥(|$)).

§2.2 Conformal blocks and theta functions

Definition 2.2.1. Conformal block (or space of vacua) V_g.(.'f) attached to

the N-pointed stable curve X = (C;¢h,... ,@n;&1,... ,¢{n) with formal
neighbourhoods X is a subspace of H!(5) consisting of vectors (1| satisfying
the following conditions.

(1) For each |¢) € H(P), the data
(#lpj(a(Gi)dEs, 7=1,2,...,N
are the Laurent expansions of an element
weH'(Cwo(*Y Q)

at ;’s with respect to the formal coordinates ¢;’s,
(2) For each |¢) € H(F), the data

@loi (Ve (&5)0) (N ¥, j=1,2,...,N

are the Laurent expansions of an element 7 € H%(C, w (*>. Q) at @j’s
with respect to the formal coordinates ;.
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Theorem 2.2.2. We have
Mg’ I-f PT]++I_7N=6
0, otherwise

dimc vg(x) = {

where g is the genus of the stable curve C.

For a proof of the above theorem we first rewrite the conditions (1), (2)
in Definition 2.2.1. Analogue of Lemma 1.2.5 shows that the condition (1)
is equivalent to the condition

(1) ZE;R»gg((tblpj(a(éj))ltﬁ)g(éj)déj) =0

for every g € H*(C,0¢(* Y Q,)), where g(¢;) is the Laurent expansion of
g at @;. The condition (2) is equivalent to the condition

N
(27) > Res((9loi (Vi (6))I9)h(¢;)des) = O

for every h € HY(C,w@ ™) (x T @), where h(¢;)(d¢;)¥ is the Laurent
expansion of h at @;. Thus, the conditions (1*) and (2*) are analogue of
the gauge condition (1.2-8).
In the following we choose integers p; such that p; = p; mod M, and
put
|P1,P2,-- . ,PN) = |p1) ® |p2) Q8 |pN)

Since we have

;Rg__a%{(a(éj)h?j)d&} = a(0)|p;) = pjlp;),

applying the condition (1*) to (¢| € V+(.'£) and 1 € HY(C,0c(* ¥ Q)
we have
N
O pi)®lprsp2s--. spN) =0
=1

Hence, if (¢|p1,p2,... ,on) # 0, then E;\;l p; =0.

Let us consider an N-pointed projective line (P!;z1,z22,...,2n) with
21 =0,29 = 1,2y = 0o0. Let z (resp. w) be a coordinate of an affine line in
P! containing 0 (resp.co) with z - w = 1. Put

2, j=12..-,N—1
(2.2-1) ¢; ={ 2T E
w, J=N,

and
X= (P1;21’227--' ’ZN;§1’§27--- 7§N)-

First we shall prove the following proposition.
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Proposition 2.2.3.

1’ 1f1_71+1_72++1_’N=0
0, otherwise

dimg vg(x) = {

Let FoH(p;) be a subspace of H(p;) spanned by the highest weight vec-
tors |IM + p;), | € Z over C. Put

FoH(P) = FoH(B,) ® FoH(B,) ® - - ® FyH(B).

To prove the above proposition we need the following lemma.

Lemma 2.2.4. Under a natural mapping
j : Home(H(p), C) — Home(FoH(P), C),

the conformal block V%(.'i) of the N -pointed projective line with coordinates
(2.2-1) is mapped injectively.

The lemma and the above consideration imply
t —
Vg(.'f) =0

ifp, +Py+ ...+ Py # 0. Therefore, assume 5, + 7, + ...+ by = 0. Choose
p;’s in such a way that

P1+p2+...+pn=0.
For an element (| € V%(.’f), put

Yt iy = @I(0M + 1) @ |l2M +p2) @ -+ @ |INM + pi)).

I Y10, 0n #0, then [y + 13 +...In = 0. The condition (1*) implies that
Yl la,... Iy determines uniquely the values

@l(a(-nM)... a(=n LM + p1) ® a(—n(D)... a(—nE)L M + p2)®
o ®a(-nM).a(=nd) I M + pu)),

for any positive integers ngi). Also,the condition (2*) implies that 11, 1,,... 1x
can be uniquely determined by the value 19,0 ,. .. 0. Thus, we conclude that

dime v;i(ae) =1

This proves Proposition 2.2.3.
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In the following we assume
Pr+Pt+...+Pn=0
Let us define a subspace V%(n) of H'(P). An element (9| is in V%(n), if (|
satisfies the following two conditions (13*) and (22*).
N
(139 ZEfﬁfg((tbla(éj)ltﬁ)gj(éf)déj) =0
j=1 =
for all

(95(¢)dé;) € CD YL (CLE1E™), and  |9) € H(B),

where an element ¢ € C in the right hand side can be considered as

(cycy.v.yC).

2

(2) > Res(lVas (6)19)9(¢1)d65) = 0

i=1
for all
M N M
(hi(6:)(d€;) %) € ED(CIE;ET™)(dE) ), and  |4) € H(B).
j=1
Key Lemma. Under the above notation we have
dim V%(n) < o0,

To prove the Key Lemma we first prove Theorem 2.2.2 for non-singular
curve. In this case we can prove a stronger theorem.
Theorem 2.2.5. Let X be an N-pointed smooth curve of genus ¢ with
formal neighbourhoods. If we have
Prt+Py+ - +Py =0,
then there is a canonical isomorphism

vg(x) ~ H°(J(C), O(MO)).

where © is the theta divisor.

Since the vector space H%(J(C), O(M®)) of the theta functions of level
M is of dimension M9, this theorem implies Theorem 2.2.2 for non-singular
underlying curve C.
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To prove Theorem 2.2.5 we need to consider the correlation functions
of Vertex operators. For k = (ki,k2,... ,km), 7 = (P1,p2,... ,pN) With
7, =p; mod M and (¥| € vg(x) put

(2.2-1)
Ve (2)(den) FM - (day) T M
= (UVi (21)Via (22) - Vi (2 )lN(d22 ) FM - (dz) M,

Then, by the operator product expansions (2.1-1) we can show the following
Lemma.

Lemma 2.2.6. 1) If\IIEi(z) # 0, then we have

m N
Epi +M Z ka =0
i=1 a=1
2) Near z, = zp we have the expansion
\Ill;p.(z) = (za — zb)Mk"k"\IIE,p.(z') +  higher order terms
where

- \'
E = (ki, - ykay
ZI = (Zlv"' 72Va"" ,Zm)-
3) Near z, = Q; we have the expansion

\I/Ep,(z) = (zq — zb)k“p"\IlE:i:(z) +  higher order terms

where

\%

ko= (ki, e ykay oo km)
5& = (plv"' 1 Da +ka,- - 7PN)'
Conversely, for (¥| € Homg(H(5), C) if we define
k’M x2 M
Up(2)(da)FM o (dey)F
by (2.2-1) and if it has the above properties 1), 2), 3) for all k and P, then

(Z] € V().
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Furthermore, (¥| is uniquely determined by
k2 &2
Up(2)(dz1)TM - (doy) TM

for all k and .

Let
E(z,w)(dz)™"/?(dw)~1/?

be the prime form of the non-singular curve C. Put

vis2) = |1 E(Za,zb)“"’”l] HEZa,Q,)M

1<a<b<m a=1j=1
Then, by Lemma 2.2.6 it is easy to show that
kp'(z)
e

is a multivalued holomorphic functions on C™. Multivaluedness comes from
that of the prime form. Let {a1, -+ 04,81, -+, 04} and {w1, -+ ,wy} area
basis of the first homology group of the curve C and a basis of holomorphic

one-forms of C with
/ wj = bij / wj = Tij,
-5 Bi

ji:Cc - J(C)

P H[(/}:wl,---,/;wg)]

be a natural mapping of the curve C into its Jacobian. Then, quasi period-
icity of the prime form is given by

E(P +a;,Q) = E(P,Q)
; P
E(P+B:i,Q) = exp(—27r\/—_1(% +/Q wi)E(P, Q)

b5r=

respectively. Let

where P + «; means the analytic continuation along the cycle @;. Then,
¢Ei(z) has the following quasi periodicity.

¢Ep'(zl’... ’Za+ai’..-zm)=¢’?i(zl’-.. sZay" " ’Zm)
k2
¢Ep'(zlv"' ,Za+ﬂi,“'2m) =exp(_aMTii

m
+kaEMkb/ wi + ka Ep]/ W)bEs(Z1r 1 Zar s Zm)

b+1 Po

1)
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Let us define a holomorphic mapping of C™ to the Jacobian J(C) by

@y cm — J(C)
m P N . Q;
— 3 LR )
(P B (ke [ +(§M/Po )

It is well-known that if m is sufficiently large, then @ is surjective. Moreover,
we can show the following lemma.

Lemma 2.2.7. Themultivalued holomorphic function ¢ % is a holomorphic
section of the line bundle @} (0], where O is the theta divisor. Moreover,
if m is sufficiently large, we have

H(C™, O(w?, [MO)])) = @, HY(J(C), O(MO)).

This implies Theorem 2.2.5.
To prove Key Lemma we also need the following lemma.

Lemma 2.2.8. For positive integers n and N there exist a smooth curve D
of genus ¢ and points @1, -+ ,@n on D with local coordinates £,£2, -+ ,£N
such that

GriH(D,0p(x)_ @;)) c CP &L, Cle; 16"
Grf R (D,wf P+ Y Q) c cP e Cle I ey ¥

where the filtration F' can be defined by the order of poles at @;.

The first inclusion can be proved, if the divisor n(@Q1 + Q2+ -+ Qn) is
non-special on a curve D). The second inclusion is trivially true, if we have
(20 - 2)(1— %) > nN.

Now introducing the filtration on ’H(ﬁ) and ’Hf(ﬁ) compatible with the
filtration in Lemma 2.2.8, we can show Key Lemma which also implies
finite dimensionality of Vﬁ(.'i) for all N-pointed stable curve with formal
neighbourhoods.

Now let us consider a semi-stable curve C. For a double point P € C
we let 7 : € — C be the normalization at the point P. Then, the inverse
image 7! (P) of the point P consists of two points Py, P_. Let n4,7— be
formal coordinates of Py and P_respectively such that C is defined formally
in a neighbourhood of the origin of C? by an equation 74 - n— = 0. Let
X=(C;&h,...,@nNn;&,. .. ,&N) be an N-pointed stable curve with formal
neighbourhoods whose underling curve is the semi-stable curve C. Put

§= (é’Ql’ ’QN7P+7P—;§17"' 7§N717+717—)‘

Then,we have the following theorem.
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Theorem 2.2.9. Under the above notation and assumptions, we have a
canonical isomorphism.
D V) _.H=vi®.

?r_?vﬁ
FE€Z/MZ

From this theorem and Proposition 2.2.3 we infer the following lemma.

Lemma 2.2.10. Let X = (C;6h4,...,@n;&,... ,éN) be an N-pointed
stable curve with formal neighbourhoods. Assume that all the irreducible
component of the semi-stable curve C are P! and the genus of C is g. Then,
we have

Mg’ if I_)1+...+I_)N=0

0, otherwise.

dimg v%(x) = {

Now we need to show that dimc V_g' (%) depends only on the genus of
the underlying curve C. For that purpose we need to consider the sheaf
of conformal blocks attached to a family of N-pointed stable curves with
formal neighbourhoods. Similar arguments as in the previous chapter give
a proof of Theorem 2.2.2.

The family Vz \, = Usg V_’;(.’i) over the moduli space .T/i-;?;,) of N-pointed
curves of genus g with formal neighbourhoods. By a similar method as

the one in [TUY], we can show that V-;, y comes from a sheaf v;;lz)v on

M;T;V, the moduli space of N-pointed curves of genus g with first order

neighbourhoods. Then, by Key Lemma we can show that Véll)v is a coherent
Oxz -module and it carries a logarithmic projectively flat connection.
a.N

From these facts we infer that vélz)v is locally free on the open part of .T/i-;b)v
corresponding to non-singular curves.

Again, using similar arguments as in Chapter I §1.3 and §1.4, we can
show that V) is locally free. By Lemma 2.2.11 this implies our Theorem

N
2.2.2,
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